Skip to main content

Biological Function of Prokineticins

  • Chapter
  • First Online:

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 46))

Abstract

Secreted peptides have been implicated in diverse physiological functions. Prokineticins are a pair of regulatory peptides that signal through two highly homologous G protein-coupled receptors. Prokineticins possess a unique structural motif of five disulfide bonds and conserved N-terminal stretches. Diverse biological functions, ranging from development to adult physiology, have been attributed to prokineticins. Herein we provide an overview of current knowledge of this interesting pair of regulatory peptides.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott NJ (2000) Inflammatory mediators and modulation of blood-brain barrier permeability. Cell Mol Neurobiol 20:131–147

    Article  PubMed  CAS  Google Scholar 

  • Altman J (1969) Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137:433–457

    Article  PubMed  CAS  Google Scholar 

  • Bassil AK, Dass NB, Murray CD, Muir A, Sanger GJ (2005) Prokineticin-2, motilin, ghrelin and metoclopramide: prokinetic utility in mouse stomach and colon. Eur J Pharmacol 524:138–144

    Article  PubMed  CAS  Google Scholar 

  • Battersby S, Critchley HO, Morgan K, Millar RP, Jabbour HN (2004) Expression and regulation of the prokineticins (endocrine gland-derived vascular endothelial growth factor and Bv8) and their receptors in the human endometrium across the menstrual cycle. J Clin Endocrinol Metab 89:2463–2469

    Article  PubMed  CAS  Google Scholar 

  • Bertrand N, Castro DS, Guillemot F (2002) Proneural genes and the specification of neural cell types. Nat Rev Neurosci 3:517–530

    Article  PubMed  CAS  Google Scholar 

  • Boisbouvier J, Albrand JP, Blackledge M, Jaquinod M, Schweitz H, Lazdunski M, Marion D (1998) A structural homologue of colipase in black mamba venom revealed by NMR floating disulphide bridge analysis. J Mol Biol 283:205–219

    Article  PubMed  CAS  Google Scholar 

  • Borbely AA (1982) A two process model of sleep regulation. Hum Neurobiol 1:195–204

    PubMed  CAS  Google Scholar 

  • Borbely AA, Achermann P, Trachsel L, Tobler I (1989) Sleep initiation and initial sleep intensity: interactions of homeostatic and circadian mechanisms. J Biol Rhythms 4:149–160

    Article  PubMed  CAS  Google Scholar 

  • Bullock CM, Li JD, Zhou QY (2004) Structural determinants required for the bioactivities of prokineticins and identification of prokineticin receptor antagonists. Mol Pharmacol 65:582–588

    Article  PubMed  CAS  Google Scholar 

  • Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, Simon MC, Takahashi JS, Bradfield CA (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103:1009–1017

    Article  PubMed  CAS  Google Scholar 

  • Caterina MJ, Julius D (2001) The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 24:487–517

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Kuei C, Sutton S, Wilson S, Yu J, Kamme F, Mazur C, Lovenberg TW, Liu C (2005) Identification and Pharmacological Characterization of Prokineticin 2{beta} as a Selective Ligand for Prokineticin Receptor 1. Mol Pharmacol 67:2070–2076

    Article  PubMed  CAS  Google Scholar 

  • Cheng MY, Bullock CM, Li C, Lee AG, Bermak JC, Belluzzi J, Weaver DR, Leslie FM, Zhou QY (2002) Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature 417:405–410

    Article  PubMed  CAS  Google Scholar 

  • Cheng MY, Bittman EL, Hattar S, Zhou QY (2005) Regulation of prokineticin 2 expression by light and the circadian clock. BMC Neurosci 6:17–27

    Article  PubMed  CAS  Google Scholar 

  • Cheng MY, Leslie FM, Zhou QY (2006) Expression of prokineticins and their receptors in the adult mouse brain. J Comp Neurol 498:796–809

    Article  PubMed  CAS  Google Scholar 

  • Cottrell GT, Zhou QY, Ferguson AV (2004) Prokineticin 2 modulates the excitability of subfornical organ neurons. J Neurosci 24:2375–2379

    Article  PubMed  CAS  Google Scholar 

  • Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14:2950–2961

    Article  PubMed  CAS  Google Scholar 

  • Dode C, Teixeira L, Levilliers J, Fouveaut C, Bouchard P, Kottler ML, Lespinasse J, Lienhardt-Roussie A, Mathieu M, Moerman A, Morgan G, Murat A, Toublanc JE, Wolczynski S, Delpech M, Petit C, Young J, Hardelin JP (2006) Kallmann syndrome: mutations in the genes encoding prokineticin-2 and prokineticin receptor-2. PLoS Genet 2:e175

    Article  PubMed  CAS  Google Scholar 

  • Dorsch M, Qiu Y, Soler D, Frank N, Duong T, Goodearl A, O'Neil S, Lora J, Fraser CC (2005) PK1/EG-VEGF induces monocyte differentiation and activation. J Leukoc Biol 78:426–434

    Article  PubMed  CAS  Google Scholar 

  • Dudley CA, Erbel-Sieler C, Estill SJ, Reick M, Franken P, Pitts S, McKnight SL (2003) Altered patterns of sleep and behavioral adaptability in NPAS2-deficient mice. Science 301:379–383

    Article  PubMed  CAS  Google Scholar 

  • Eastman CI, Mistlberger RE, Rechtschaffen A (1984) Suprachiasmatic nuclei lesions eliminate circadian temperature and sleep rhythms in the rat. Physiol Behav 32:357–368

    Article  PubMed  CAS  Google Scholar 

  • Edgar DM, Dement WC, Fuller CA (1993) Effect of SCN lesions on sleep in squirrel monkeys: evidence for opponent processes in sleep-wake regulation. J Neurosci 13:1065–1079

    PubMed  CAS  Google Scholar 

  • Ferrara N, Frantz G, LeCouter J, Dillard-Telm L, Pham T, Draksharapu A, Giordano T, Peale F (2003) Differential expression of the angiogenic factor genes vascular endothelial growth factor (VEGF) and endocrine gland-derived VEGF in normal and polycystic human ovaries. Am J Pathol 162:1881–1893

    Article  PubMed  CAS  Google Scholar 

  • Ferrara N, LeCouter J, Lin R, Peale F (2004) EG-VEGF and Bv8: a novel family of tissue-restricted angiogenic factors. Biochim Biophys Acta 1654:69–78

    PubMed  CAS  Google Scholar 

  • Fraser HM, Bell J, Wilson H, Taylor PD, Morgan K, Anderson RA, Duncan WC (2005) Localization and quantification of cyclic changes in the expression of endocrine gland vascular endothelial growth factor in the human corpus luteum. J Clin Endocrinol Metab 90:427–434

    Article  PubMed  CAS  Google Scholar 

  • Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438

    Article  PubMed  CAS  Google Scholar 

  • Gooley JJ, Schomer A, Saper CB (2006) The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nat Neurosci 9:398–407

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann P, Feige JJ, Alfaidy N (2006) Expression and oxygen regulation of endocrine gland-derived vascular endothelial growth factor/prokineticin-1 and its receptors in human placenta during early pregnancy. Endocrinol 147:1675–1684

    Article  CAS  Google Scholar 

  • Hoogerwerf WA (2006) Prokineticin 1 inhibits spontaneous giant contractions in the murine proximal colon through nitric oxide release. Neurogastroenterol Motil 18:455–463

    Article  PubMed  CAS  Google Scholar 

  • Hu WP, Li JD, Zhang C, Luo G, Amadesi S, Bunnett N, Zhou QY (2006) Impaired pain sensation in mice lacking the prokineticin 2. Mol Pain 2:35

    Article  PubMed  CAS  Google Scholar 

  • Hu WP, Li JD, Zhang C, Boehmer L, Siegel JM, Zhou QY (2007) Altered circadian and homeostatic sleep regulation in prokineticin 2-deficient mice. Sleep 30:247–256

    PubMed  Google Scholar 

  • Joubert FJ, Strydom DJ (1980) Snake venom. The amino acid sequence of protein A from Dendroaspis polylepis polylepis (black mamba) venom. Hoppe Seylers. Z Physiol Chem 361:1787–1794

    CAS  Google Scholar 

  • Kaser A, Winklmayr M, Lepperdinger G, Kreil G (2003) The AVIT protein family. Secreted cysteine-rich vertebrate proteins with diverse functions. EMBO Rep 4:469–473

    Article  PubMed  CAS  Google Scholar 

  • Kaplan MS, Hinds JW (1977) Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 197:1092–1094

    Article  PubMed  CAS  Google Scholar 

  • Kisliouk T, Levy N, Hurwitz A, Meidan R (2003) Presence and regulation of endocrine gland vascular endothelial growth factor/prokineticin-1 and its receptors in ovarian cells. J Clin Endocrinol Metab 88:3700–3707

    Article  PubMed  CAS  Google Scholar 

  • Kisliouk T, Podlovni H, Meidan R (2005a) Unique expression and regulatory mechanisms of EG-VEGF/prokineticin-1 and its receptors in the corpus luteum. Ann Anat 187:529–537

    Article  PubMed  CAS  Google Scholar 

  • Kisliouk T, Podlovni H, Spanel-Borowski K, Ovadia O, Zhou QY, Meidan R (2005b) Prokineticins (endocrine gland-derived vascular endothelial growth factor and BV8) in the bovine ovary: expression and role as mitogens and survival factors for corpus luteum-derived endothelial cells. Endocrinol 146:3950–3958

    Article  CAS  Google Scholar 

  • Kisliouk T, Friedman A, Klipper E, Zhou QY, Schams D, Alfaidy N, Meidan R (2007) Expression pattern of prokineticin 1 and its receptors in bovine ovaries during the estrous cycle: involvement in corpus luteum regression and follicular atresia. Biol Reprod 76:749–758

    Article  PubMed  CAS  Google Scholar 

  • Klein DC, Moore RY, Reppert SM (eds) (1991) Suprachiasmatic nucleus: the mind's clock. Oxford University Press, Oxford, UK

    Google Scholar 

  • Kniesel U, Wolburg H (2000) Tight junctions of the blood-brain barrier. Cell Mol Neurobiol 20:57–76

    Article  PubMed  CAS  Google Scholar 

  • Lambert CM, Machida KK, Smale L, Nunez AA, Weaver DR (2005) Analysis of the Prokineticin 2 System in a Diurnal Rodent, the Unstriped Nile Grass Rat (Arvicanthis niloticus). J Biol Rhythms 20:206–218

    Article  PubMed  CAS  Google Scholar 

  • Laposky A, Easton A, Dugovic C, Walisser J, Bradfield C, Turek F (2005) Deletion of the mammalian circadian clock gene BMAL1/Mop3 alters baseline sleep architecture and the response to sleep deprivation. Sleep 28:395–409

    PubMed  Google Scholar 

  • LeCouter J, Kowalski J, Foster J, Hass P, Zhang Z, Dillard-Telm L, Frantz G, Rangell L, DeGuzman L, Keller GA, Peale F, Gurney A, Hillan KJ, Ferrara N (2001) Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature 412:877–884

    Article  PubMed  CAS  Google Scholar 

  • LeCouter J, Ferrara N (2003a) EG-VEGF and Bv8. A novel family of tissue-selective mediators of angiogenesis, endothelial phenotype, and function. Trends Cardiovasc Med 13:276–282

    Article  PubMed  CAS  Google Scholar 

  • LeCouter J, Lin R, Tejada M, Frantz G, Peale F, Hillan KJ, Ferrara N (2003b) The endocrine-gland-derived VEGF homologue Bv8 promotes angiogenesis in the testis: Localization of Bv8 receptors to endothelial cells. Proc Natl Acad Sci USA 100:2685–2690

    Article  PubMed  CAS  Google Scholar 

  • LeCouter J, Lin R, Frantz G, Zhang Z, Hillan K, Ferrara N (2003c) Mouse endocrine gland-derived vascular endothelial growth factor: a distinct expression pattern from its human ortholog suggests different roles as a regulator of organ-specific angiogenesis. Endocrinol 144:2606–2616

    Article  CAS  Google Scholar 

  • LeCouter J, Zlot C, Tejada M, Peale F, Ferrara N (2004) Bv8 and endocrine gland-derived vascular endothelial growth factor stimulate hematopoiesis and hematopoietic cell mobilization. Proc Natl Acad Sci USA 101:16813–16818

    Article  PubMed  CAS  Google Scholar 

  • Lewis KE (2004) Prokineticin-2, a potential novel protein therapeutic increases post-operative gastric and intestinal motility in rats. Gastroenterology 126(2):A641

    Google Scholar 

  • Li M, Bullock CM, Knauer DJ, Ehlert FJ, Zhou QY (2001) Identification of two prokineticin cDNAs: recombinant proteins potently contract gastrointestinal smooth muscle. Mol Pharmacol 59:692–698

    PubMed  CAS  Google Scholar 

  • Li JD, Hu WP, Boehmer LN, Cheng MY, Lee AG, Jilek A, Siegel JM, Zhou QY (2006) Attenuated Circadian Rhythms in Mice Lack the Prokineticin 2 Gene. J Neurosci 26:11615–11623

    Article  PubMed  CAS  Google Scholar 

  • Lin DC, Bullock CM, Ehlert FJ, Chen JL, Tian H, Zhou QY (2002a) Identification and molecular characterization of two closely related G protein-coupled receptors activated by prokineticins/endocrine gland vascular endothelial growth factor. J Biol Chem 277:19276–19280

    Article  PubMed  CAS  Google Scholar 

  • Lin R, LeCouter J, Kowalski J, Ferrara N (2002b) Characterization of endocrine gland-derived vascular endothelial growth factor signaling in adrenal cortex capillary endothelial cells. J Biol Chem 277:8724–8729

    Article  PubMed  CAS  Google Scholar 

  • Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148

    Article  PubMed  CAS  Google Scholar 

  • Lowrey PL, Takahashi JS (2004) Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet 5:407–441

    Article  PubMed  CAS  Google Scholar 

  • Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11:173–189

    Article  PubMed  CAS  Google Scholar 

  • Maldonado-Perez D, Evans J, Denison F, Millar RP, Jabbour HN (2007) Potential roles of the prokineticins in reproduction. Trends Endocrinol Metab 18:66–72

    Article  PubMed  CAS  Google Scholar 

  • Martucci C, Franchi S, Giannini E, Tian H, Melchiorri P, Negri L, Sacerdote P (2006) Bv8, the amphibian homologue of the mammalian prokineticins, induces a proinflammatory phenotype of mouse macrophages. Br J Pharmacol 147:225–234

    Article  PubMed  CAS  Google Scholar 

  • Masuda Y, Takatsu Y, Terao Y, Kumano S, Ishibashi Y, Suenaga M, Abe M, Fukusumi S, Watanabe T, Shintani Y, Yamada T, Hinuma S, Inatomi N, Ohtaki T, Onda H, Fujino M (2002) Isolation and identification of EG-VEGF/prokineticins as cognate ligands for two orphan G-protein-coupled receptors. Biochem Biophys Res Commun 293:396–402

    Article  PubMed  CAS  Google Scholar 

  • Masumoto KH, Nagano M, Takashima N, Hayasaka N, Hiyama H, Matsumoto S, Inouye ST, Shigeyoshi Y (2006) Distinct localization of prokineticin 2 and prokineticin receptor 2 mRNAs in the rat suprachiasmatic nucleus. Eur J Neurosci 23:2959–2970

    Article  PubMed  Google Scholar 

  • Matsumoto S, Yamazaki C, Masumoto KH, Nagano M, Naito M, Soga T, Hiyama H, Matsumoto M, Takasaki J, Kamohara M, Matsuo A, Ishii H, Kobori M, Katoh M, Matsushime H, Furuichi K, Shigeyoshi Y (2006) Abnormal development of the olfactory bulb and reproductive system in mice lacking prokineticin receptor PKR2. Proc Natl Acad Sci USA 103:4140–4145

    Article  PubMed  CAS  Google Scholar 

  • Mistlberger RE, Bergmann BM, Waldenar W, Rechtschaffen A (1983) Recovery sleep following sleep deprivation in intact and suprachiasmatic nuclei-lesioned rats. Sleep 6:217–233

    PubMed  CAS  Google Scholar 

  • Mollay C, Wechselberger C, Mignogna G, Negri L, Melchiorri P, Barra D, Kreil G (1999) Bv8, a small protein from frog skin and its homologue from snake venom induce hyperalgesia in rats. Eur J Pharmacol 374:189–196

    Article  PubMed  CAS  Google Scholar 

  • Morton AJ, Wood NI, Hastings MH, Hurelbrink C, Barker RA, Maywood ES (2005) Disintegration of the sleep-wake cycle and circadian timing in Huntington's disease. J Neurosci 25:157–163

    Article  PubMed  CAS  Google Scholar 

  • Mouret J, Coindet J, Debilly G, Chouvet G (1978) Suprachiasmatic nuclei lesions in the rat: alterations in sleep circadian rhythms. Electroencephalogr Clin Neurophysiol 45:402–408

    Article  PubMed  CAS  Google Scholar 

  • Negri L, Lattanzi R, Giannini E, Metere A, Colucci M, Barra D, Kreil G, Melchiorri P (2002) Nociceptive sensitization by the secretory protein Bv8. Br J Pharmacol 137:1147–1154

    Article  PubMed  CAS  Google Scholar 

  • Negri L, Lattanzi R, Giannini E, De Felice M, Colucci A, Melchiorri P (2004) Bv8, the amphibian homologue of the mammalian prokineticins, modulates ingestive behaviour in rats. Br J Pharmacol 142:181–191

    Article  PubMed  CAS  Google Scholar 

  • Negri L, Lattanzi R, Giannini E, Colucci MA, Mignogna G, Barra D, Grohovaz F, Codazzi F, Kaiser A, Kreil G, Melchiorri P (2005) Biological activities of Bv8 analogues. Br J Pharmacol 146:625–632

    Article  PubMed  CAS  Google Scholar 

  • Negri L, Lattanzi R, Giannini E, Colucci M, Margheriti F, Melchiorri P, Vellani V, Tian H, De Felice M, Porreca F (2006) Impaired nociception and inflammatory pain sensation in mice lacking the prokineticin receptor PKR1: focus on interaction between PKR1 and the capsaicin receptor TRPV1 in pain behavior. J Neurosci 26:6716–6727

    Article  PubMed  CAS  Google Scholar 

  • Negri L, Lattanzi R, Giannini E, Melchiorri P (2007) Bv8/Prokineticin proteins and their receptors. Life Sci 81:1103–1116

    Article  PubMed  CAS  Google Scholar 

  • Ng KL, Li JD, Cheng MY, Leslie FM, Lee AG, Zhou QY (2005) Dependence of olfactory bulb neurogenesis on prokineticin 2 signaling. Science 308:1923–1927

    Article  PubMed  CAS  Google Scholar 

  • Ngan ES, Sit FY, Lee K, Miao X, Yuan Z, Wang W, Nicholls JM, Wong KK, Garcia-Barcelo M, Lui VC, Tam PK (2007) Implications of endocrine gland-derived vascular endothelial growth factor/prokineticin-1 signaling in human neuroblastoma progression. Clin Cancer Res 13:868–875

    Article  PubMed  CAS  Google Scholar 

  • Pasquali D, Rossi V, Staibano S, De Rosa G, Chieffi P, Prezioso D, Mirone V, Mascolo M, Tramontano D, Bellastella A, Sinisi AA (2006) The endocrine-gland-derived vascular endothelial growth factor (EG-VEGF)/prokineticin 1 and 2 and receptor expression in human prostate: Up-regulation of EG-VEGF/prokineticin 1 with malignancy. Endocrinol 147:4245–4251

    Article  CAS  Google Scholar 

  • Pitteloud N, Zhang C, Pignatelli D, Li JD, Raivio T, Cole LW, Plummer L, Jacobson-Dickman EE, Mellon PL, Zhou QY, Crowley WF Jr (2007) Loss-of-function mutation in the prokineticin 2 gene causes Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism. Proc Natl Acad Sci USA 104:17447–17452

    Article  PubMed  CAS  Google Scholar 

  • Pitts S, Perone E, Silver R (2003) Food-entrained circadian rhythms are sustained in arrhythmic Clk/Clk mutant mice. Am J Physiol Regul Integr Comp Physiol 285:R57–R67

    PubMed  CAS  Google Scholar 

  • Podlovni H, Ovadia O, Kisliouk T, Klipper E, Zhou QY, Friedman A, Alfaidy N, Meidan R (2006) Differential expression of prokineticin receptors by endothelial cells derived from different vascular beds: a physiological basis for distinct endothelial function. Cell Physiol Biochem 18:315–326

    Article  PubMed  CAS  Google Scholar 

  • Prosser HM, Bradley A, Chesham JE, Ebling FJ, Hastings MH, Maywood ES (2007) Prokineticin receptor 2 (Prokr2) is essential for the regulation of circadian behavior by the suprachiasmatic nuclei. Proc Natl Acad Sci USA 104:648–653

    Article  PubMed  CAS  Google Scholar 

  • Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941

    Article  PubMed  CAS  Google Scholar 

  • Schweitz H, Bidard JN, Lazdunski M (1990) Purification and pharmacological characterization of peptide toxins from the black mamba (Dendroaspis polylepis) venom. Toxicon 28:847–856

    Article  PubMed  CAS  Google Scholar 

  • Schweitz H, Pacaud P, Diochot S, Moinier D, Lazdunski M (1999) MIT(1), a black mamba toxin with a new and highly potent activity on intestinal contraction. FEBS Lett 461:183–188

    Article  PubMed  CAS  Google Scholar 

  • Soderhall I, Kim YA, Jiravanichpaisal P, Lee SY, Soderhall K (2005) An ancient role for a prokineticin domain in invertebrate hematopoiesis. J Immunol 174:6153–6160

    PubMed  Google Scholar 

  • Soga T, Matsumoto S, Oda T, Saito T, Hiyama H, Takasaki J, Kamohara M, Ohishi T, Matsushime H, Furuichi K (2002) Molecular cloning and characterization of prokineticin receptors. Biochim Biophys Acta 1579:173–179

    PubMed  CAS  Google Scholar 

  • Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291:490–493

    Article  PubMed  CAS  Google Scholar 

  • Tanaka N, Ikawa M, Mata NL, Verma IM (2006) Choroidal neovascularization in transgenic mice expressing prokineticin 1: an animal model for age-related macular degeneration. Mol Ther 13:609–616

    Article  PubMed  CAS  Google Scholar 

  • Tobler I, Borbely AA, Groos G (1983) The effect of sleep deprivation on sleep in rats with suprachiasmatic lesions. Neurosci Lett 42:49–54

    Article  PubMed  CAS  Google Scholar 

  • Trachsel L, Edgar DM, Seidel WF, Heller HC, Dement WC (1992) Sleep homeostasis in suprachiasmatic nuclei-lesioned rats: effects of sleep deprivation and triazolam administration. Brain Res 589:253–261

    Article  PubMed  CAS  Google Scholar 

  • Vellani V, Colucci M, Lattanzi R, Giannini E, Negri L, Melchiorri P, McNaughton PA (2006) Sensitization of transient receptor potential vanilloid 1 by the prokineticin receptor agonist Bv8. J Neurosci 26:5109–5116

    Article  PubMed  CAS  Google Scholar 

  • Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL, McDonald JD, Dove WF, Pinto LH, Turek FW, Takahashi JS (1994) Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264:719–725

    Article  PubMed  CAS  Google Scholar 

  • Wechselberger C, Puglisi R, Engel E, Lepperdinger G, Boitani C, Kreil G (1999) The mammalian homologues of frog Bv8 are mainly expressed in spermatocytes. FEBS Lett 462:177–181

    Article  PubMed  CAS  Google Scholar 

  • Wierman ME, Pawlowski JE, Allen MP, Xu M, Linseman DA, Nielsen-Preiss S (2004) Molecular mechanisms of gonadotropin-releasing hormone neuronal migration. Trends Endocrinol Metab 15:96–102

    Article  PubMed  CAS  Google Scholar 

  • Wisor JP, O'Hara BF, Terao A, Selby CP, Kilduff TS, Sancar A, Edgar DM, Franken P (2002) A role for cryptochromes in sleep regulation. BMC Neurosci 3:20

    Article  PubMed  Google Scholar 

  • Wurts SW, Edgar DM (2000) Circadian and homeostatic control of rapid eye movement (REM) sleep: promotion of REM tendency by the suprachiasmatic nucleus. J Neurosci 20:4300–4310

    PubMed  CAS  Google Scholar 

  • Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, Block GD, Sakaki Y, Menaker M, Tei H (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288:682–685

    Article  PubMed  CAS  Google Scholar 

  • Yuill EA, Ferri CC, Zhou QY, Ferguson AV (2007) Prokineticin 2 Depolarizes Paraventricular Nucleus Neurons: Cellular Correlates for Circadian Regulation of Autonomic Function. Eur J Neurosci 25:425–434

    Article  PubMed  Google Scholar 

  • Zhang C, Ng KL, Li JD, He F, Anderson DJ, Sun YE, Zhou QY (2007) Prokineticin 2 is a target gene of proneural basic helix-loop-helix factors for olfactory bulb neurogenesis. J Biol Chem 282:6917–6921

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Yang N, Conejo-Garcia JR, Katsaros D, Mohamed-Hadley A, Fracchioli S, Schlienger K, Toll A, Levine B, Rubin SC, Coukos G (2003) Expression of endocrine gland-derived vascular endothelial growth factor in ovarian carcinoma. Clin Cancer Res 9:264–272

    PubMed  Google Scholar 

  • Zhou QY, Cheng MY (2005) Prokineticin 2 and circadian clock output. FEBS J 272:5703–5709

    Article  PubMed  CAS  Google Scholar 

  • Zhou QY (2006) The prokineticins: a novel pair of regulatory peptides. Mol Interv 6:330–338

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q.-Y. Zhou .

Editor information

Olivier Civelli Qun-Yong Zhou

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhou, QY., Meidan, R. (2008). Biological Function of Prokineticins. In: Civelli, O., Zhou, QY. (eds) Orphan G Protein-Coupled Receptors and Novel Neuropeptides. Results and Problems in Cell Differentiation, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/400_2007_053

Download citation

Publish with us

Policies and ethics