Skip to main content

Regulatory Mechanisms of Proton-Translocating FOF1-ATP Synthase

  • Chapter
  • First Online:
Bioenergetics

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 45))

Abstract

H+-FOF1-ATP synthase catalyzes synthesis of ATP from ADP and inorganic phosphate using the energy of transmembrane electrochemical potential difference of proton (\(\Delta\tilde{\mu}_{\text{H}^{+}}\)). The enzyme can also generate this potential difference by working as an ATP-driven proton pump. Several regulatory mechanisms are known to suppress the ATPase activity of FOF1:

  1. 1.

    Non-competitive inhibition by MgADP, a feature shared by FOF1 from bacteria, chloroplasts and mitochondria

  2. 2.

    Inhibition by subunit ε in chloroplast and bacterial enzyme

  3. 3.

    Inhibition upon oxidation of two cysteines in subunit γ in chloroplast FOF1

  4. 4.

    Inhibition by an additional regulatory protein (IF1) in mitochondrial enzyme

In this review we summarize the information available on these regulatory mechanisms and discuss possible interplay between them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahams JP, Leslie AG, Lutter R, Walker JE (1994) Structure at 2.4 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370:621–628

    PubMed  CAS  Google Scholar 

  • Adachi K, Oiwa K, Nishizaka T, Furuike S, Noji H, Itoh H, Yoshida M, Kinosita K Jr (2007) Coupling of rotation and catalysis in F1-ATPase revealed by single-molecule imaging and manipulation. Cell 130:309–321

    PubMed  CAS  Google Scholar 

  • Aggeler R, Capaldi RA (1996) Nucleotide-dependent movement of the epsilon subunit between alpha and beta subunits in the Escherichia coli F1FO-type ATPase. J Biol Chem 271:13888–13891

    PubMed  CAS  Google Scholar 

  • al Shawi MK, Ketchum CJ, Nakamoto RK (1997) The Escherichia coli FOF1 gammaM23K uncoupling mutant has a higher K0.5 for Pi. Transition state analysis of this mutant and others reveals that synthesis and hydrolysis utilize the same kinetic pathway. Biochemistry 36:12961–12969

    Google Scholar 

  • al Shawi MK, Senior AE (1992) Effects of dimethyl sulfoxide on catalysis in Escherichia coli F1-ATPase. Biochemistry 31:886–891

    Google Scholar 

  • Arana JL, Vallejos RH (1982) Involvement of sulfhydryl groups in the activation mechanism of the ATPase activity of chloroplast coupling factor 1. J Biol Chem 257:1125–1127

    PubMed  CAS  Google Scholar 

  • Ariga T, Muneyuki E, Yoshida M (2007) F1-ATPase rotates by an asymmetric, sequential mechanism using all three catalytic subunits. Nat Struct Mol Biol 14:841–846

    PubMed  CAS  Google Scholar 

  • Asami K, Juniti K, Ernster L (1970) Possible regulatory function of a mitochondrial ATPase inhibitor in respiratory chain-linked energy transfer. Biochim Biophys Acta 205:307–311

    PubMed  CAS  Google Scholar 

  • Avron M, Jagendorf AT (1959) Evidence concerning the mechanism of adenosine triphosphate formation by spinach chloroplasts. J Biol Chem 234:967–972

    PubMed  CAS  Google Scholar 

  • Bakker-Grunwald T, Van Dam K (1974) On the mechanism of activation of the ATPase in chloroplasts. Biochim Biophys Acta 347:290–298

    PubMed  CAS  Google Scholar 

  • Bald D, Muneyuki E, Amano T, Kruip J, Hisabori T, Yoshida M (1999) The noncatalytic site-deficient alpha3beta3gamma subcomplex and FOF1-ATP synthase can continuously catalyse ATP hydrolysis when Pi is present. Eur J Biochem 262:563–568

    PubMed  CAS  Google Scholar 

  • Baltscheffsky M, Lundin A (1979) Flash-induced increase of ATPase activity in Rhodospirillum rubrum chromatophores. In: Mukohata Y, Packer L (eds) Cation flux across biomembranes. Academic, New York, pp 209–218

    Google Scholar 

  • Boyer PD (1997) The ATP synthase – a splendid molecular machine. Annu Rev Biochem 66:717–749

    PubMed  CAS  Google Scholar 

  • Boyer PD (2002) Catalytic site occupancy during ATP synthase catalysis. FEBS Lett 512:29–32

    PubMed  CAS  Google Scholar 

  • Boyer PD, Cross RL, Momsen W (1973) A new concept for energy coupling in oxidative phosphorylation based on a molecular explanation of the oxygen exchange reactions. Proc Natl Acad Sci USA 70:2837–2839

    PubMed  CAS  Google Scholar 

  • Bulygin VV, Vinogradov AD (1991) Interaction of MG2+ with F0.F1 mitochondrial ATPase as related to its slow active/inactive transition. Biochem J 276:149–156

    PubMed  CAS  Google Scholar 

  • Cabezon E, Butler PJ, Runswick MJ, Carbajo RJ, Walker JE (2002) Homologous and heterologous inhibitory effects of ATPase inhibitor proteins on F-ATPases. J Biol Chem 277:41334–41341

    PubMed  CAS  Google Scholar 

  • Cabezon E, Butler PJ, Runswick MJ, Walker JE (2000) Modulation of the oligomerization state of the bovine F1-ATPase inhibitor protein, IF1, by pH. J Biol Chem 275:25460–25464

    PubMed  CAS  Google Scholar 

  • Cabezon E, Montgomery MG, Leslie AG, Walker JE (2003) The structure of bovine F1-ATPase in complex with its regulatory protein IF1. Nat Struct Biol 10:744–750

    PubMed  CAS  Google Scholar 

  • Capaldi RA, Schulenberg B (2000) The epsilon subunit of bacterial and chloroplast F1FO ATPases. Structure, arrangement, and role of the epsilon subunit in energy coupling within the complex. Biochim Biophys Acta 1458:263–269

    PubMed  CAS  Google Scholar 

  • Carmeli C, Avron M (1972) Light-triggered and light-dependent ATPase activities in chloroplasts. Methods Enzymol 24:92–96

    Article  PubMed  CAS  Google Scholar 

  • Carmeli C, Lifshitz Y (1972) Effects of Pi and ADP on ATPase activity in chloroplasts. Biochim Biophys Acta 267:86–95

    PubMed  CAS  Google Scholar 

  • Cintron NM, Pedersen PL (1979) A protein inhibitor of the mitochondrial adenosine triphosphatase complex of rat liver. Purification and characterization. J Biol Chem 254:3439–3443

    PubMed  CAS  Google Scholar 

  • Cipriano DJ, Dunn SD (2006) The role of the epsilon subunit in the Escherichia coli ATP synthase. The C-terminal domain is required for efficient energy coupling. J Biol Chem 281:501–507

    PubMed  CAS  Google Scholar 

  • Creczynski-Pasa TB, Graber P (1994) ADP binding and ATP synthesis by reconstituted H+-ATPase from chloroplasts. FEBS Lett 350:195–198

    PubMed  CAS  Google Scholar 

  • Cross RL, Nalin CM (1982) Adenine nucleotide binding sites on beef heart F1-ATPase. Evidence for three exchangeable sites that are distinct from three noncatalytic sites. J Biol Chem 257:2874–2881

    PubMed  CAS  Google Scholar 

  • Diez M, Zimmermann B, Borsch M, Konig M, Schweinberger E, Steigmiller S, Reuter R, Felekyan S, Kudryavtsev V, Seidel CA, Graber P (2004) Proton-powered subunit rotation in single membrane-bound F(0)F(1)-ATP synthase. Nat Struct Mol Biol 11:135–141

    PubMed  CAS  Google Scholar 

  • Dimroth P, Kaim G, Matthey U (1998) The motor of the ATP synthase. Biochim Biophys Acta 1365:87–92

    PubMed  CAS  Google Scholar 

  • Drobinskaya IY, Kozlov IA, Murataliev MB, Vulfson EN (1985) Tightly bound adenosine diphosphate, which inhibits the activity of mitochondrial F1-ATPase, is located at the catalytic site of the enzyme. FEBS Lett 182:419–424

    PubMed  CAS  Google Scholar 

  • Duhe RJ, Selman BR (1990) The dithiothreitol-stimulated dissociation of the chloroplast coupling factor 1 epsilon-subunit is reversible. Biochim Biophys Acta 1017:70–78

    PubMed  CAS  Google Scholar 

  • Duncan TM, Bulygin VV, Zhou Y, Hutcheon ML, Cross RL (1995) Rotation of subunits during catalysis by Escherichia coli F1-ATPase. Proc Natl Acad Sci USA 92:10964–10968

    PubMed  CAS  Google Scholar 

  • Dunham KR, Selman BR (1981a) Interactions of inorganic phosphate with spinach coupling factor 1. Effects on ATPase and ADP binding activities. J Biol Chem 256:10044–10049

    PubMed  CAS  Google Scholar 

  • Dunham KR, Selman BR (1981b) Regulation of spinach chloroplast coupling factor 1 ATPase activity. J Biol Chem 256:212–218

    PubMed  CAS  Google Scholar 

  • Elston T, Wang H, Oster G (1998) Energy transduction in ATP synthase. Nature 391:510–513

    PubMed  CAS  Google Scholar 

  • Etzold C, Deckers-Hebestreit G, Altendorf K (1997) Turnover number of Escherichia coli FOF1 ATP synthase for ATP synthesis in membrane vesicles. Eur J Biochem 243:336–343

    PubMed  CAS  Google Scholar 

  • Evron Y, Johnson EA, McCarty RE (2000) Regulation of proton flow and ATP synthesis in chloroplasts. J Bioenerg Biomembranes 32:501–506

    CAS  Google Scholar 

  • Feldman RI, Boyer PD (1985) The role of tightly bound ADP on chloroplast ATPase. J Biol Chem 260:13088–13094

    PubMed  CAS  Google Scholar 

  • Feniouk BA, Cherepanov DA, Junge W, Mulkidjanian AY (2001) Coupling of proton flow to ATP synthesis in Rhodobacter capsulatus: FOF1-ATP synthase is absent from about half of chromatophores. Biochim Biophys Acta 1506:189–203

    PubMed  CAS  Google Scholar 

  • Feniouk BA, Junge W (2005) Regulation of the FOF1-ATP synthase: The conformation of subunit epsilon might be determined by directionality of subunit gamma rotation. FEBS Lett 579:5114–5118

    PubMed  CAS  Google Scholar 

  • Feniouk BA, Kozlova MA, Knorre DA, Cherepanov DA, Mulkidjanian AY, Junge W (2004) The proton driven rotor of ATP synthase: Ohmic conductance (10 fS), and absence of voltage gating. Biophys J 86:4094–4109

    PubMed  CAS  Google Scholar 

  • Feniouk BA, Mulkidjanian AY, Junge W (2005) Proton slip in the ATP synthase of Rhodobacter capsulatus: induction, proton conduction, and nucleotide dependence. Biochim Biophys Acta 1706:184–194

    PubMed  CAS  Google Scholar 

  • Feniouk BA, Suzuki T, Yoshida M (2007) Regulatory interplay between proton motive force, ADP, phosphate, and subunit epsilon in bacterial ATP synthase. J Biol Chem 282:764–772

    PubMed  CAS  Google Scholar 

  • Feniouk BA, Suzuki T, Yoshida M (2006) The role of subunit epsilon in the catalysis and regulation of FOF1-ATP synthase. Biochim Biophys Acta 1757:326–338

    PubMed  CAS  Google Scholar 

  • Fillingame RH (1975) Identification of the dicyclohexylcarbodiimide-reactive protein component of the adenosine 5′-triphosphate energy-transducing system of Escherichia coli. J Bacteriol 124:870–883

    PubMed  CAS  Google Scholar 

  • Fischer S, Graber P, Turina P (2000) The activity of the ATP synthase from Escherichia coli is regulated by the transmembrane proton motive force. J Biol Chem 275:30157–30162

    PubMed  CAS  Google Scholar 

  • Fitin AF, Vasilyeva EA, Vinogradov AD (1979) An inhibitory high affinity binding site for ADP in the oligomycin-sensitive ATPase of beef heart submitochondrial particles. Biochem Biophys Res Commun 86:434–439

    PubMed  CAS  Google Scholar 

  • Galkin MA, Vinogradov AD (1999) Energy-dependent transformation of the catalytic activities of the mitochondrial FOF1-ATP synthase. FEBS Lett 448:123–126

    PubMed  CAS  Google Scholar 

  • Garcia JJ, Capaldi RA (1998) Unisite catalysis without rotation of the gamma-epsilon domain in Escherichia coli F1-ATPase. J Biol Chem 273:15940–15945

    PubMed  CAS  Google Scholar 

  • Gibbons C, Montgomery MG, Leslie AG, Walker JE (2000) The structure of the central stalk in bovine F(1)-ATPase at 2.4 Å resolution. Nat Struct Biol 7:1055–1061

    PubMed  CAS  Google Scholar 

  • Graber P, Schlodder E, Witt HT (1977) Conformational change of the chloroplast ATPase induced by a transmembrane electric field and its correlation to phosphorylation. Biochim Biophys Acta 461:426–440

    PubMed  CAS  Google Scholar 

  • Graber P, Witt HT (1976) Relations between the electrical potential, pH gradient, proton flux and phosphorylation in the photosynthetic membrane. Biochim Biophys Acta 423:141–163

    PubMed  CAS  Google Scholar 

  • Green DW, Grover GJ (2000) The IF1 inhibitor protein of the mitochondrial FOF1-ATPase. Biochim Biophys Acta 1458:343–355

    PubMed  CAS  Google Scholar 

  • Grotjohann I, Graber P (2002) The H+-ATPase from chloroplasts: effect of different reconstitution procedures on ATP synthesis activity and on phosphate dependence of ATP synthesis. Biochim Biophys Acta 1556:208–216

    PubMed  CAS  Google Scholar 

  • Hangarter RP, Grandoni P, Ort DR (1987) The effects of chloroplast coupling factor reduction on the energetics of activation and on the energetics and efficiency of ATP formation. J Biol Chem 262:13513–13519

    PubMed  CAS  Google Scholar 

  • Hara KY, Kato Y-Yamada, Kikuchi Y, Hisabori T, Yoshida M (2001) The role of the beta-DELSEED motif of F1-ATPase: propagation of the inhibitory effect of the epsilon subunit. J Biol Chem 276:23969–23973

    Google Scholar 

  • Hashimoto T, Negawa Y, Tagawa K (1981) Binding of intrinsic ATPase inhibitor to mitochondrial ATPase-stoichiometry of binding of nucleotides, inhibitor, and enzyme. J Biochem (Tokyo) 90:1151–1157

    CAS  Google Scholar 

  • Hashimoto T, Yoshida Y, Tagawa K (1983) Binding properties of an intrinsic ATPase inhibitor and occurrence in yeast mitochondria of a protein factor which stabilizes and facilitates the binding of the inhibitor to F1FO-ATPase. J Biochem (Tokyo) 94:715–720

    CAS  Google Scholar 

  • Hatefi Y, Yagi T, Phelps DC, Wong SY, Vik SB, Galante YM (1982) Substrate binding affinity changes in mitochondrial energy-linked reactions. Proc Natl Acad Sci USA 79:1756–1760

    PubMed  CAS  Google Scholar 

  • Hirono-Hara Y, Ishuzuka K, Kinosita K, Yoshida M, Noji H (2005) Activation of pausing F-1 motor by external force. Proc Natl Acad Sci USA 102:4288–4293

    PubMed  CAS  Google Scholar 

  • Hirono-Hara Y, Noji H, Nishiura M, Muneyuki E, Hara KY, Yasuda R, Kinosita K Jr, Yoshida M (2001) Pause and rotation of F1-ATPase during catalysis. Proc Natl Acad Sci USA 98:13649–13654

    PubMed  CAS  Google Scholar 

  • Hisabori T, Konno H, Ichimura H, Strotmann H, Bald D (2002) Molecular devices of chloroplast F1-ATP synthase for the regulation. Biochim Biophys Acta 1555:140–146

    PubMed  CAS  Google Scholar 

  • Hisabori T, Ueoka-Nakanishi H, Konno H, Koyama F (2003) Molecular evolution of the modulator of chloroplast ATP synthase: origin of the conformational change dependent regulation. FEBS Lett 545:71–75

    PubMed  CAS  Google Scholar 

  • Hong S, Pedersen PL (2003) ATP synthases: insights into their motor functions from sequence and structural analyses. J Bioenerg Biomembr 35:95–120

    PubMed  CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD – visual molecular dynamics. J Molec Graphics 14:33–38

    CAS  Google Scholar 

  • Hyndman DJ, Milgrom YM, Bramhall EA, Cross RL (1994) Nucleotide-binding sites on Escherichia coli F1-ATPase. Specificity of noncatalytic sites and inhibition at catalytic sites by MgADP. J Biol Chem 269:28871–28877

    PubMed  CAS  Google Scholar 

  • Ichikawa N, Karaki A, Kawabata M, Ushida S, Mizushima M, Hashimoto T (2001) The region from phenylalanine-17 to phenylalanine-28 of a yeast mitochondrial ATPase inhibitor is essential for its ATPase inhibitory activity. J Biochem (Tokyo) 130:687–693

    CAS  Google Scholar 

  • Ichikawa N, Ogura C (2003) Overexpression, purification, and characterization of human and bovine mitochondrial ATPase inhibitors: comparison of the properties of mammalian and yeast ATPase inhibitors. J Bioenerg Biomembr 35:399–407

    PubMed  CAS  Google Scholar 

  • Iino R, Murakami T, Iizuka S, Kato Y-Y, Suzuki T, Yoshida M (2005) Real time monitoring of conformational dynamics of the epsilon subunit in F1-ATPase. J Biol Chem 280:40130–40134

    PubMed  CAS  Google Scholar 

  • Itoh H, Takahashi A, Adachi K, Noji H, Yasuda R, Yoshida M, Kinosita K Jr (2004) Mechanically driven ATP synthesis by F1-ATPase. Nature 427:465–468

    PubMed  CAS  Google Scholar 

  • Iwatsuki H, Lu YM, Yamaguchi K, Ichikawa N, Hashimoto T (2000) Binding of an intrinsic ATPase inhibitor to the F1FO-ATPase in phosphorylating conditions of yeast mitochondria. J Biochem (Tokyo) 128:553–559

    CAS  Google Scholar 

  • Jagendorf AT, Avron M (1958) Cofactors and rates of photosynthetic phosphorylation by spinach chloroplasts. J Biol Chem 231:277–290

    PubMed  CAS  Google Scholar 

  • Jault JM, Allison WS (1993) Slow binding of ATP to noncatalytic nucleotide binding sites which accelerates catalysis is responsible for apparent negative cooperativity exhibited by the bovine mitochondrial F1-ATPase. J Biol Chem 268:1558–1566

    PubMed  CAS  Google Scholar 

  • Jault JM, Allison WS (1994) Hysteretic inhibition of the bovine heart mitochondrial F1-ATPase is due to saturation of noncatalytic sites with ADP which blocks activation of the enzyme by ATP. J Biol Chem 269:319–325

    PubMed  CAS  Google Scholar 

  • Jault JM, Matsui T, Jault FM, Kaibara C, Muneyuki E, Yoshida M, Kagawa Y, Allison WS (1995) The alpha 3 beta 3 gamma complex of the F1-ATPase from thermophilic Bacillus PS3 containing the alpha D261N substitution fails to dissociate inhibitory MgADP from a catalytic site when ATP binds to noncatalytic sites. Biochemistry 34:16412–16418

    PubMed  CAS  Google Scholar 

  • Jault JM, Paik SR, Grodsky NB, Allison WS (1994) Lowered temperature or binding of pyrophosphate to sites for noncatalytic nucleotides modulates the ATPase activity of the beef heart mitochondrial F1-ATPase by decreasing the affinity of a catalytic site for inhibitory MgADP. Biochemistry 33:14979–14985

    PubMed  CAS  Google Scholar 

  • Junesch U, Gräber P (1985) The rate of ATP synthesis as a function of delta pH in normal and dithiothreitol-modified chloroplasts. Biochim Biophys Acta 809:429–434

    CAS  Google Scholar 

  • Junesch U, Graber P (1987) Influence of the redox state and the activation of the chloroplast ATP synthase on proton-transport-coupled ATP synthesis/hydrolysis. Biochim Biophys Acta 893:275–288

    CAS  Google Scholar 

  • Junesch U, Graber P (1991) The rate of ATP-synthesis as a function of delta pH and delta psi catalyzed by the active, reduced H+-ATPase from chloroplasts. FEBS Lett 294:275–278

    PubMed  CAS  Google Scholar 

  • Junge W (1987) Complete tracking of transient proton flow through active chloroplast ATP synthase. Proc Natl Acad Sci USA 84:7084–7088

    PubMed  CAS  Google Scholar 

  • Junge W, Lill H, Engelbrecht S (1997) ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem Sci 22:420–423

    PubMed  CAS  Google Scholar 

  • Kabaleeswaran V, Puri N, Walker JE, Leslie AG, Mueller DM (2006) Novel features of the rotary catalytic mechanism revealed in the structure of yeast F1 ATPase. EMBO J 25:5433–5442

    PubMed  CAS  Google Scholar 

  • Kalashnikova TY, Milgrom YM, Murataliev MB (1988) The effect of inorganic pyrophosphate on the activity and Pi-binding properties of mitochondrial F1-ATPase. Eur J Biochem 177:213–218

    PubMed  CAS  Google Scholar 

  • Kaplan JH, Jagendorf AT (1968) Further studies on chloroplast adenosine triphosphatase activation by acid-base transition. J Biol Chem 243:972–979

    PubMed  CAS  Google Scholar 

  • Kaplan JH, Uribe E, Jagendorf AT (1967) ATP hydrolysis caused by acid-base transition of spinach chloroplasts. Arch Biochem Biophys 120:365–370

    PubMed  CAS  Google Scholar 

  • Kasahara M, Penefsky HS (1978) High affinity binding of monovalent Pi by beef heart mitochondrial adenosine triphosphatase. J Biol Chem 253:4180–4187

    PubMed  CAS  Google Scholar 

  • Kato Y, Matsui T, Tanaka N, Muneyuki E, Hisabori T, Yoshida M (1997) Thermophilic F1-ATPase is activated without dissociation of an endogenous inhibitor, epsilon subunit. J Biol Chem 272:24906–24912

    PubMed  CAS  Google Scholar 

  • Kato-Yamada Y (2005) Isolated epsilon subunit of Bacillus subtilis F(1)-ATPase binds ATP. FEBS Lett 579:6875–6878

    PubMed  CAS  Google Scholar 

  • Kato-Yamada Y, Bald D, Koike M, Motohashi K, Hisabori T, Yoshida M (1999) Epsilon subunit, an endogenous inhibitor of bacterial F1-ATPase, also inhibits FOF1-ATPase. J Biol Chem 274:33991–33994

    PubMed  CAS  Google Scholar 

  • Kato-Yamada Y, Yoshida M (2003) Isolated epsilon subunit of thermophilic F1-ATPase binds ATP. J Biol Chem 278:36013–36016

    PubMed  CAS  Google Scholar 

  • Kayalar C, Rosing J, Boyer PD (1976) 2,4-Dinitrophenol causes a marked increase in the apparent Km of Pi and of ADP for oxidative phosphorylation. Biochem Biophys Res Commun 72:1153–1159

    PubMed  CAS  Google Scholar 

  • Kayalar C, Rosing J, Boyer PD (1977) An alternating site sequence for oxidative phosphorylation suggested by measurement of substrate binding patterns and exchange reaction inhibitions. J Biol Chem 252:2486–2491

    PubMed  CAS  Google Scholar 

  • Keis S, Stocker A, Dimroth P, Cook GM (2006) Inhibition of ATP hydrolysis by thermoalkaliphilic F1FO-ATP synthase is controlled by the C terminus of the epsilon subunit. J Bacteriol 188:3796–3804

    PubMed  CAS  Google Scholar 

  • Kironde FA, Cross RL (1987) Adenine nucleotide binding sites on beef heart F1-ATPase. Asymmetry and subunit location. J Biol Chem 262:3488–3495

    PubMed  CAS  Google Scholar 

  • Komatsu-Takaki M (1986) Interconversion of two distinct states of active CF0-CF1 (chloroplast ATPase complex) in chloroplasts. J Biol Chem 261:1116–1119

    PubMed  CAS  Google Scholar 

  • Komatsu-Takaki M (1989) Energy-dependent conformational changes in the epsilon subunit of the chloroplast ATP synthase (CF0CF1). J Biol Chem 264:17750–17753

    PubMed  CAS  Google Scholar 

  • Konno H, Murakami-Fuse T, Fujii F, Koyama F, Ueoka H-Nakanishi, Pack CG, Kinjo M, Hisabori T (2006) The regulator of the F1 motor: inhibition of rotation of cyanobacterial F1-ATPase by the epsilon subunit. EMBO J 25:4596–4604

    Google Scholar 

  • Konno H, Suzuki T, Bald D, Yoshida M, Hisabori T (2004) Significance of the epsilon subunit in the thiol modulation of chloroplast ATP synthase. Biochem Biophys Res Commun 318:17–24

    PubMed  CAS  Google Scholar 

  • Kozlov IA, Vulfson EN (1985) Tightly bound nucleotides affect phosphate binding to mitochondrial F1-ATPase. FEBS Lett 182:425–428

    PubMed  CAS  Google Scholar 

  • Kramer DM, Crofts AR (1989) Activation of the chloroplast ATP-ase measured by the electrochromic change in leaves of intact plants. Biochim Biophys Acta 976:28–41

    CAS  Google Scholar 

  • Kramer DM, Sacksteder CA, Cruz JA (1999) How acidic is the lumen? Photosynth Res 60:151–163

    CAS  Google Scholar 

  • Kuki M, Noumi T, Maeda M, Amemura A, Futai M (1988) Functional domains of epsilon subunit of Escherichia coli H+-ATPase (F0F1). J Biol Chem 263:17437–17442

    PubMed  CAS  Google Scholar 

  • Laget PP, Smith JB (1979) Inhibitory properties of endogenous subunit epsilon in the Escherichia coli F1 ATPase. Arch Biochem Biophys 197:83–89

    PubMed  CAS  Google Scholar 

  • Lefebvre-Legendre L, Balguerie A, Duvezin-Caubet S, Giraud MF, Slonimski PP, di Rago JP (2003) F1-catalysed ATP hydrolysis is required for mitochondrial biogenesis in Saccharomyces cerevisiae growing under conditions where it cannot respire. Mol Microbiol 47:1329–1339

    PubMed  CAS  Google Scholar 

  • Lippe G, Sorgato MC, Harris DA (1988) The binding and release of the inhibitor protein are governed independently by ATP and membrane potential in ox-heart submitochondrial vesicles. Biochim Biophys Acta 933:12–21

    PubMed  CAS  Google Scholar 

  • Malyan A, Allison W (2002) Properties of noncatalytic sites of thioredoxin-activated chloroplast coupling factor 1. Biochim Biophys Acta 1554:153–158

    PubMed  CAS  Google Scholar 

  • Malyan AN (2005) Light-dependent incorporation of adenine nucleotide into noncatalytic sites of chloroplast ATP synthase. Biochemistry (Mosc) 70:1245–1250

    CAS  Google Scholar 

  • Malyan AN (2006) ADP and ATP binding to noncatalytic sites of thiol-modulated chloroplast ATP synthase. Photosynth Res 88:9–18

    PubMed  CAS  Google Scholar 

  • Matsuyama S, Xu Q, Velours J, Reed JC (1998) The mitochondrial FOF1-ATPase proton pump is required for function of the proapoptotic protein Bax in yeast and mammalian cells. Mol Cell 1:327–336

    PubMed  CAS  Google Scholar 

  • McCarthy JE, Ferguson SJ (1983) The effects of partial uncoupling upon the kinetics of ATP synthesis by vesicles from Paracoccus denitrificans and by bovine heart submitochondrial particles. Implications for the mechanism of the proton-translocating ATP synthase. Eur J Biochem 132:425–431

    PubMed  CAS  Google Scholar 

  • Melandri AB, Fabbri E, Melandri BA (1975) Energy transduction in photosynthetic bacteria. VIII. Activation of the energy-transducing ATPase by inorganic phosphate. Biochim Biophys Acta 376:82–88

    PubMed  CAS  Google Scholar 

  • Mendel-Hartvig J, Capaldi RA (1991) Catalytic site nucleotide and inorganic phosphate dependence of the conformation of the epsilon subunit in Escherichia coli adenosinetriphosphatase. Biochemistry 30:1278–1284

    PubMed  CAS  Google Scholar 

  • Milgrom YM, Boyer PD (1990) The ADP that binds tightly to nucleotide-depleted mitochondrial F1-ATPase and inhibits catalysis is bound at a catalytic site. Biochim Biophys Acta 1020:43–48

    PubMed  CAS  Google Scholar 

  • Milgrom YM, Cross RL (1993) Nucleotide binding sites on beef heart mitochondrial F1-ATPase. Cooperative interactions between sites and specificity of noncatalytic sites. J Biol Chem 268:23179–23185

    PubMed  CAS  Google Scholar 

  • Milgrom YM, Ehler LL, Boyer PD (1990) ATP binding at noncatalytic sites of soluble chloroplast F1-ATPase is required for expression of the enzyme activity. J Biol Chem 265:18725–18728

    PubMed  CAS  Google Scholar 

  • Milgrom YM, Ehler LL, Boyer PD (1991) The characteristics and effect on catalysis of nucleotide binding to noncatalytic sites of chloroplast F1-ATPase. J Biol Chem 266:11551–11558

    PubMed  CAS  Google Scholar 

  • Mills JD, Mitchell P (1982) Thiol modulation of CF0-CF1 stimulates acid/base-dependent phosphorylation of ADP by broken pea chloroplasts. FEBS 144:63–67

    Google Scholar 

  • Mills JD, Mitchell P, Schurmann P (1980) Modulation of coupling factor ATPase activity in intact chloroplasts: The role of the thioredoxin system. FEBS 112:173–177

    Google Scholar 

  • Mimura H, Hashimoto T, Yoshida Y, Ichikawa N, Tagawa K (1993) Binding of an intrinsic ATPase inhibitor to the interface between alpha- and beta-subunits of FOF1ATPase upon de-energization of mitochondria. J Biochem (Tokyo) 113:350–354

    CAS  Google Scholar 

  • Minkov IB, Fitin AF, Vasilyeva EA, Vinogradov AD (1979) MG2+-induced ADP-dependent inhibition of the ATPase activity of beef heart mitochondrial coupling factor F1. Biochem Biophys Res Commun 89:1300–1306

    PubMed  CAS  Google Scholar 

  • Mitome N, Ono S, Suzuki T, Shimabukuro K, Muneyuki E, Yoshida M (2002) The presence of phosphate at a catalytic site suppresses the formation of the MgADP-inhibited form of F1-ATPase. Eur J Biochem 269:53–60

    PubMed  CAS  Google Scholar 

  • Moyle J, Mitchell P (1975) Active/inactive state transitions of mitochondrial ATPase molecules influenced by MG2+, anions and aurovertin. FEBS Lett 56:55–61

    PubMed  CAS  Google Scholar 

  • Murataliev MB, Boyer PD (1992) The mechanism of stimulation of MgATPase activity of chloroplast F1-ATPase by non-catalytic adenine-nucleotide binding. Acceleration of the ATP-dependent release of inhibitory ADP from a catalytic site. Eur J Biochem 209:681–687

    PubMed  CAS  Google Scholar 

  • Nalin CM, McCarty RE (1984) Role of a disulfide bond in the gamma subunit in activation of the ATPase of chloroplast coupling factor 1. J Biol Chem 259:7275–7280

    PubMed  CAS  Google Scholar 

  • Nelson N, Nelson H, Racker E (1972) Partial resolution of the enzymes catalyzing photophosphorylation. XII. Purification and properties of an inhibitor isolated from chloroplast coupling factor 1. J Biol Chem 247:7657–7662

    PubMed  CAS  Google Scholar 

  • Nishizaka T, Oiwa K, Noji H, Kimura S, Muneyuki E, Yoshida M, Kinosita K Jr (2004) Chemomechanical coupling in F1-ATPase revealed by simultaneous observation of nucleotide kinetics and rotation. Nat Struct Mol Biol 11:142–148

    PubMed  CAS  Google Scholar 

  • Noji H, Yasuda R, Yoshida M, Kinosita K Jr (1997) Direct observation of the rotation of F1-ATPase. Nature 386:299–302

    PubMed  CAS  Google Scholar 

  • Nowak KF, McCarty RE (2004) Regulatory role of the C-terminus of the epsilon subunit from the chloroplast ATP synthase. Biochemistry 43:3273–3279

    PubMed  CAS  Google Scholar 

  • Pacheco-Moises F, Garcia JJ, Rodriguez-Zavala JS, Moreno-Sanchez R (2000) Sulfite and membrane energization induce two different active states of the Paracoccus denitrificans FOF1-ATPase. Eur J Biochem 267:993–1000

    PubMed  CAS  Google Scholar 

  • Panchenko MV, Vinogradov AD (1985) Interaction between the mitochondrial ATP synthetase and ATPase inhibitor protein. Active/inactive slow pH-dependent transitions of the inhibitor protein. FEBS Lett 184:226–230

    PubMed  CAS  Google Scholar 

  • Penefsky HS (1977) Reversible binding of Pi by beef heart mitochondrial adenosine triphosphatase. J Biol Chem 252:2891–2899

    PubMed  CAS  Google Scholar 

  • Penefsky HS (2005) Pi binding by the F1-ATPase of beef heart mitochondria and of the Escherichia coli plasma membrane. FEBS Lett 579:2250–2252

    PubMed  CAS  Google Scholar 

  • Perez JA, Ferguson SJ (1990a) Kinetics of oxidative phosphorylation in Paracoccus denitrificans. 1. Mechanism of ATP synthesis at the active site(s) of FOF1-ATPase. Biochemistry 29:10503–10518

    PubMed  CAS  Google Scholar 

  • Perez JA, Ferguson SJ (1990b) Kinetics of oxidative phosphorylation in Paracoccus denitrificans. 2. Evidence for a kinetic and thermodynamic modulation of FOF1-ATPase by the activity of the respiratory chain. Biochemistry 29:10518–10526

    PubMed  CAS  Google Scholar 

  • Petrack B, Craston A, Sheppy F, Farron F (1965) Studies on the hydrolysis of adenosine triphosphate by spinach chloroplasts. J Biol Chem 240:906–914

    PubMed  CAS  Google Scholar 

  • Pitard B, Richard P, Dunach M, Rigaud JL (1996) ATP synthesis by the FOF1 ATP synthase from thermophilic Bacillus PS3 reconstituted into liposomes with bacteriorhodopsin. 2. Relationships between proton motive force and ATP synthesis. Eur J Biochem 235:779–788

    PubMed  CAS  Google Scholar 

  • Pullman ME, Monroy GC (1963) A naturally occurring inhibitor of mitochondrial adenosine triphosphatase. J Biol Chem 238:3762–3769

    PubMed  CAS  Google Scholar 

  • Richard P, Pitard B, Rigaud JL (1995) ATP synthesis by the FOF1-ATPase from the thermophilic Bacillus PS3 co-reconstituted with bacteriorhodopsin into liposomes. Evidence for stimulation of ATP synthesis by ATP bound to a noncatalytic binding site. J Biol Chem 270:21571–21578

    PubMed  CAS  Google Scholar 

  • Richter ML (2004) Gamma-epsilon interactions regulate the chloroplast ATP synthase. Photosynth Res 79:319–329

    PubMed  CAS  Google Scholar 

  • Richter ML, McCarty RE (1987) Energy-dependent changes in the conformation of the epsilon subunit of the chloroplast ATP synthase. J Biol Chem 262:15037–15040

    PubMed  CAS  Google Scholar 

  • Richter ML, Patrie WJ, McCarty RE (1984) Preparation of the epsilon subunit and epsilon subunit-deficient chloroplast coupling factor 1 in reconstitutively active forms. J Biol Chem 259:7371–7373

    PubMed  CAS  Google Scholar 

  • Rodgers AJW, Wilce MCJ (2000) Structure of the gamma-epsilon complex of ATP synthase. Nat Struct Biol 7:1051–1054

    PubMed  CAS  Google Scholar 

  • Rondelez Y, Tresset G, Nakashima T, Kato Y-Yamada, Fujita H, Takeuchi S, Noji H (2005) Highly coupled ATP synthesis by F1-ATPase single molecules. Nature 433:773–777

    Google Scholar 

  • Rosen G, Gresser M, Vinkler C, Boyer PD (1979) Assessment of total catalytic sites and the nature of bound nucleotide participation in photophosphorylation. J Biol Chem 254:10654–10661

    PubMed  CAS  Google Scholar 

  • Rosing J, Kayalar C, Boyer PD (1977) Evidence for energy-dependent change in phosphate binding for mitochondrial oxidative phosphorylation based on measurements of medium and intermediate phosphate-water exchanges. J Biol Chem 252:2478–2485

    PubMed  CAS  Google Scholar 

  • Roveri OA, Muller JL, Wilms J, Slater EC (1980) The pre-steady state and steady-state kinetics of the ATPase activity of mitochondrial F1. Biochim Biophys Acta 589:241–255

    PubMed  CAS  Google Scholar 

  • Sabbert D, Engelbrecht S, Junge W (1996) Intersubunit rotation in active F-ATPase. Nature 381:623–625

    PubMed  CAS  Google Scholar 

  • Schwartz M (1968) Light induced proton gradient links electron transport and phosphorylation. Nature 219:915–919

    PubMed  CAS  Google Scholar 

  • Schwarz O, Schurmann P, Strotmann H (1997) Kinetics and thioredoxin specificity of thiol modulation of the chloroplast H+-ATPase. J Biol Chem 272:16924–16927

    PubMed  CAS  Google Scholar 

  • Schwerzmann K, Pedersen PL (1981) Proton–adenosinetriphosphatase complex of rat liver mitochondria: effect of energy state on its interaction with the adenosinetriphosphatase inhibitory peptide. Biochemistry 20:6305–6311

    PubMed  CAS  Google Scholar 

  • Senior AE, Nadanaciva S, Weber J (2002) The molecular mechanism of ATP synthesis by F1FO-ATP synthase. Biochim Biophys Acta 1553:188–211

    PubMed  CAS  Google Scholar 

  • Sherman PA, Wimmer MJ (1984) Activation of ATPase of spinach coupling factor 1. Release of tightly bound ADP from the soluble enzyme. Eur J Biochem 139:367–371

    PubMed  CAS  Google Scholar 

  • Shi XB, Wei JM, Shen YK (2001) Effects of sequential deletions of residues from the N- or C-terminus on the functions of epsilon subunit of the chloroplast ATP synthase. Biochemistry 40:10825–10831

    PubMed  CAS  Google Scholar 

  • Shimabukuro K, Yasuda R, Muneyuki E, Hara KY, Kinosita K Jr, Yoshida M (2003) Catalysis and rotation of F1 motor: cleavage of ATP at the catalytic site occurs in 1 ms before 40 degree substep rotation. Proc Natl Acad Sci USA 100:14731–14736

    PubMed  CAS  Google Scholar 

  • Shoshan V, Selman BR (1979) The relationship between light-induced adenine nucleotide exchange and ATPase activity in chloroplast thylakoid membranes. J Biol Chem 254:8801–8807

    PubMed  CAS  Google Scholar 

  • Slooten L, Vandenbranden S (1989) ATP-synthesis by proteoliposomes incorporating Rhodospirillum rubrum FOF1 as measured with firefly luciferase: dependence on delta and delta pH. Biochim Biophys Acta 976:150–160

    PubMed  CAS  Google Scholar 

  • Smith DJ, Stokes BO, Boyer PD (1976) Probes of initial phosphorylation events in ATP synthesis by chloroplasts. J Biol Chem 251:4165–4171

    PubMed  CAS  Google Scholar 

  • Smith JB, Sternweis PC (1977) Purification of membrane attachment and inhibitory subunits of the proton translocating adenosine triphosphatase from Escherichia coli. Biochemistry 16:306–311

    PubMed  CAS  Google Scholar 

  • Smith JB, Sternweis PC, Heppel LA (1975) Partial purification of active delta and epsilon subunits of the membrane ATPase from Escherichia coli. J Supramol Struct 3:248–255

    PubMed  CAS  Google Scholar 

  • Smith LT, Rosen G, Boyer PD (1983) Properties of ATP tightly bound to catalytic sites of chloroplast ATP synthase. J Biol Chem 258:10887–10894

    PubMed  CAS  Google Scholar 

  • Soteropoulos P, Suss KH, McCarty RE (1992) Modifications of the gamma subunit of chloroplast coupling factor 1 alter interactions with the inhibitory epsilon subunit. J Biol Chem 267:10348–10354

    PubMed  CAS  Google Scholar 

  • St Pierre J, Brand MD, Boutilier RG (2000) Mitochondria as ATP consumers: cellular treason in anoxia. Proc Natl Acad Sci USA 97:8670–8674

    PubMed  CAS  Google Scholar 

  • Strotmann H, Bickel S, Huchzermeyer B (1976) Energy-dependent release of adenine nucleotides tightly bound to chloroplast coupling factor CF1. FEBS Lett 61:194–198

    PubMed  CAS  Google Scholar 

  • Strotmann H, Thelen R, Muller W, Baum W (1990) A delta pH clamp method for analysis of steady-state kinetics of photophosphorylation. Eur J Biochem 193:879–886

    PubMed  CAS  Google Scholar 

  • Suzuki T, Murakami T, Iino R, Suzuki J, Ono S, Shirakihara Y, Yoshida M (2003) FOF1-ATPase/synthase is geared to the synthesis mode by conformational rearrangement of epsilon subunit in response to proton motive force and ADP/ATP balance. J Biol Chem 278:46840–46846

    PubMed  CAS  Google Scholar 

  • Suzuki T, Ueno H, Mitome N, Suzuki J, Yoshida M (2002) F0 of ATP synthase is a rotary proton channel: Obligatory coupling of proton translocation with rotation of c-subunit ring. J Biol Chem 277:13281–13285

    PubMed  CAS  Google Scholar 

  • Tomashek JJ, Glagoleva OB, Brusilow WS (2004) The Escherichia coli F1FO ATP synthase displays biphasic synthesis kinetics. J Biol Chem 279:4465–4470

    PubMed  CAS  Google Scholar 

  • Tsunoda SP, Rodgers AJ, Aggeler R, Wilce MC, Yoshida M, Capaldi RA (2001) Large conformational changes of the epsilon subunit in the bacterial F1FO ATP synthase provide a ratchet action to regulate this rotary motor enzyme. Proc Natl Acad Sci USA 98:6560–6564

    PubMed  CAS  Google Scholar 

  • Turina P, Melandri BA, Graber P (1991) ATP synthesis in chromatophores driven by artificially induced ion gradients. Eur J Biochem 196:225–229

    PubMed  CAS  Google Scholar 

  • Turina P, Rumberg B, Melandri BA, Graber P (1992) Activation of the H+-ATP synthase in the photosynthetic bacterium Rhodobacter capsulatus. J Biol Chem 267:11057–11063

    PubMed  CAS  Google Scholar 

  • Ueno H, Suzuki T, Kinosita K Jr, Yoshida M (2005) ATP-driven stepwise rotation of FOF1-ATP synthase. Proc Natl Acad Sci USA 102:1333–1338

    PubMed  CAS  Google Scholar 

  • Uhlin U, Cox GB, Guss JM (1997) Crystal structure of the epsilon subunit of the proton-translocating ATP synthase from Escherichia coli. Structure 5:1219–1230

    PubMed  CAS  Google Scholar 

  • Vik SB (2000) What is the role of epsilon in the Escherichia coli ATP synthase? J Bioenerg Biomembr 32:485–491

    PubMed  CAS  Google Scholar 

  • Vik SB, Patterson AR, Antonio BJ (1998) Insertion scanning mutagenesis of subunit a of the F1FO ATP synthase near His245 and implications on gating of the proton channel. J Biol Chem 273:16229–16234

    PubMed  CAS  Google Scholar 

  • Weber J, Wilke S-Mounts, Grell E, Senior AE (1994) Tryptophan fluorescence provides a direct probe of nucleotide binding in the noncatalytic sites of Escherichia coli F1-ATPase. J Biol Chem 269:11261–11268

    Google Scholar 

  • Wilkens S, Capaldi RA (1994) Asymmetry and structural changes in ECF1 examined by cryoelectronmicroscopy. Biol Chem Hoppe Seyler 375:43–51

    PubMed  CAS  Google Scholar 

  • Wilkens S, Dahlquist FW, McIntosh LP, Donaldson LW, Capaldi RA (1995) Structural features of the epsilon subunit of the Escherichia coli ATP synthase determined by NMR spectroscopy. Nat Struct Biol 2:961–967

    PubMed  CAS  Google Scholar 

  • Xiong H, Zhang D, Vik SB (1998) Subunit epsilon of the Escherichia coli ATP synthase: novel insights into structure and function by analysis of thirteen mutant forms. Biochemistry 37:16423–16429

    PubMed  CAS  Google Scholar 

  • Yagi H, Kajiwara N, Tanaka H, Tsukihara T, Kato-Yamada Y, Yoshida M, Akutsu H (2007) Structures of the thermophilic F1 ATPase epsilon subunit suggesting ATP-regulated arm motion of its C-terminal domain in F1. Proc Natl Acad Sci USA 104:11233–11238

    PubMed  CAS  Google Scholar 

  • Yasuda R, Noji H, Kinosita K Jr, Yoshida M (1998) F1-ATPase is a highly efficient molecular motor that rotates with discrete 120 degree steps. Cell 93:1117–1124

    PubMed  CAS  Google Scholar 

  • Yoshida M, Allison WS (1983) Modulation by ADP and MG2+ of the inactivation of the F1-ATPase from the thermophilic bacterium, PS3, with dicyclohexylcarbodiimide. J Biol Chem 258:14407–14412

    PubMed  CAS  Google Scholar 

  • Yoshida M, Allison WS (1986) Characterization of the catalytic and noncatalytic ADP binding sites of the F1-ATPase from the thermophilic bacterium, PS3. J Biol Chem 261:5714–5721

    PubMed  CAS  Google Scholar 

  • Zharova TV, Vinogradov AD (2004) Energy-dependent transformation of FOF1-ATPase in Paracoccus denitrificans plasma membranes. J Biol Chem 279:12319–12324

    PubMed  CAS  Google Scholar 

  • Zhou JM, Xue ZX, Du ZY, Melese T, Boyer PD (1988) Relationship of tightly bound ADP and ATP to control and catalysis by chloroplast ATP synthase. Biochemistry 27:5129–5135

    PubMed  CAS  Google Scholar 

  • Zimmermann B, Diez M, Zarrabi N, Graber P, Borsch M (2005) Movements of the epsilon-subunit during catalysis and activation in single membrane-bound H+-ATP synthase. EMBO J 24:2053–2063

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Boris A. Feniouk or Masasuke Yoshida .

Editor information

Günter Schäfer Harvey S. Penefsky

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Feniouk, B.A., Yoshida, M. (2007). Regulatory Mechanisms of Proton-Translocating FOF1-ATP Synthase. In: Schäfer, G., Penefsky, H.S. (eds) Bioenergetics. Results and Problems in Cell Differentiation, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/400_2007_043

Download citation

Publish with us

Policies and ethics