Skip to main content

Regulation of Excitability by Potassium Channels

  • Chapter
  • First Online:
Inhibitory Regulation of Excitatory Neurotransmission

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 44))

Abstract

Neurons express a large number of different voltage-gated potassium (Kv) channels with distinct biophysical and biochemical properties. Possibly, this diversity reflects the need to regulate and fine-tune neuronal excitability at various levels of complexity in space and time. In this context, Kv channels operating in the subthreshold range of action- potential firing are of particular interest. It is likely that these Kv channels play a prominent role in both propagating and integrating dendritic signaling, as well as axonal action-potential firing and propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An WF, Bowlby MR, Betty M, Cao J, Ling HP, Mendoza G, Hinson JW, Mattson KI, Strassle BW, Trimmer JS, Rhodes KJ (2000) Modulation of A-type potassium channels by a family of calcium sensors. Nature 403:553–556

    Article  PubMed  CAS  Google Scholar 

  2. Ashizara T, Butler IJ, Harati Y, Roontga SM (1983) A dominantly inherited syndrome with continuous motor neuron discharges. Ann Neurol 13:285–290

    Article  Google Scholar 

  3. Baranauskas G, Tkatch T, Nagata K, Yeh JZ, Surmeier DJ (2003) Kv3.4 subunits enhance the repolarizing efficiency of Kv3.1 channels in fast-spiking neurons. Nat Neurosci 6:258–266

    Article  PubMed  CAS  Google Scholar 

  4. Bernard C, Anderson A, Becker A, Poolos NP, Beck H, Johnston D. Acquired dendritic channelopathy in temporal lobe epilepsy. Science 305:532–535

    Google Scholar 

  5. Bond CT, Maylie J, Adelman JP (2005) SK channels in excitability, pacemaking and synaptic integration. Curr Opin Neurobiol 15:305–311

    Article  PubMed  CAS  Google Scholar 

  6. Browne DL, Gancher ST, Nutt JG, Brunt ERP, Smith EA, Kramer P, Litt M (1994) Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene KCNA1. Nat Genet 8:136–140

    Article  PubMed  CAS  Google Scholar 

  7. Cai X, Liang CW, Muralidharan S, Kao JPY, Tang CM, Thompson SM (2004) Unique roles of SK and Kv4.2 Potassium channels in dendritic integration. Neuron 44:351–364

    Article  PubMed  CAS  Google Scholar 

  8. Callsen B, Isbrandt D, Sauter K, Hartmann LS, Pongs O, Bähring R (2005) Contribution of N- and C-terminal Kv4.2 channel domains to KChIP interaction. J Physiol 568:397–412

    Article  PubMed  CAS  Google Scholar 

  9. Cooper EC, Milroy A, Jan YN, Jan LY, Lowenstein DH (1998) Presynaptic localization of Kv1.4-containing A-type potassium channels near excitatory synapses in the hippocampus. J Neurosci 18:965–974

    PubMed  CAS  Google Scholar 

  10. Cooper EC, Aldape KD, Abosch A, Barbaro NM, Berger MS, Peacock WS, Jan YN, Jan LY (2000) Colocalization and coassembly of two human brain M-type potassium channel subunits that are mutated in epilepsy. Proc Natl Acad Sci USA 97:4914–4919

    Article  PubMed  CAS  Google Scholar 

  11. Cui J, Aldrich RW (2000) Allosteric linkage between voltage and Ca2+-dependent activation of BK-type mslo1 K+ channels. Biochemistry 39:15612–15619

    Article  PubMed  CAS  Google Scholar 

  12. Dedek K, Fusco L, Teloy N, Steinlein OK (2003) Neonatal convulsions and epileptic encephalopathy in an Italian family with a missense mutation in the fifth transmembrane region of KCNQ2. Epilepsy Res 54:21–27

    Article  PubMed  CAS  Google Scholar 

  13. Delmas P, Brown DA (2005) Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci 6:850–862

    Article  PubMed  CAS  Google Scholar 

  14. Diochot S, Schweitz H, Béress L, Lazdunski M (1998) Sea anemone peptides with a specific blocking activity against the fast inactivating potassium channel Kv3.4. J Biol Chem 273:6744–6749

    Article  PubMed  CAS  Google Scholar 

  15. Drewe JA, Verma S, Frech G, Joho RH (1992) Distinct spatial and temporal expression patterns of K+ channel mRNAs from different subfamilies. J Neurosci 12:538–548

    PubMed  CAS  Google Scholar 

  16. Fagni L, Chavis P, Ango F, Bockaert J (2000) Complex interactions between mGluRs, intracellular Ca2+ stores and ion channels in neurons. Trends Neurosci 23:80–88

    Article  PubMed  CAS  Google Scholar 

  17. Fisher TE, Voisin DL, Bourque CW (1998) Density of transient K+ current influences excitability in acutely isolated vasopressin and oxytocin neurones of rat hypothalamus. J Physiol 511:423–432

    Article  PubMed  CAS  Google Scholar 

  18. Frech GC, VanDongen AMJ, Schuster G, Brown AM, Joho RH (1989) A novel potassium channel with delayed rectifier properties isolated from rat brain by expression cloning. Nature 340:642–645

    Article  PubMed  CAS  Google Scholar 

  19. Geiger JRP, Jonas P (2000) Dynamic control of presynaptic Ca2+ inflow by fast-inactivating K+ channels in hippocampal mossy fiber boutons. Neuron 28:927–939

    Article  PubMed  CAS  Google Scholar 

  20. Gouaux E, MacKinnon R (2005) Principles of selective ion transport in channels and pumps. Science 310:1461–1465

    Article  PubMed  CAS  Google Scholar 

  21. Haley JE, Delmas P, Offermanns S, Abogadie FC, Simon MI, Buckley NJ, Brown DA (2000) Muscarinic inhibition of calcium current and M current in Gα q-deficient mice. J Neurosci 20:3973–3979

    PubMed  CAS  Google Scholar 

  22. Herson PS, Virk M, Rustay NR, Bond CT, Crabbe JC, Adelman JP, Maylie J (2003) A mouse model of episodic ataxia type-1. Nat Neurosci 6:378–383

    Article  PubMed  CAS  Google Scholar 

  23. Hoffmann DA, Magee JC, Colbert CM, Johnston D (1997) K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387:869–875

    Article  CAS  Google Scholar 

  24. Hoshi N, Langeberg LK, Scott JD (2005) Distinct enzyme combinations in AKAP signalling complexes permit functional diversity. Nat Cell Biol 7:1066–1073

    Article  PubMed  CAS  Google Scholar 

  25. Hutcheon B, Yarom Y (2000) Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci 23:216–222

    Article  PubMed  CAS  Google Scholar 

  26. Jentsch TJ (2000) Neuronal KCNQ channels: physiology and role in disease. Nat Rev Neurosci 1:21–30

    Article  PubMed  CAS  Google Scholar 

  27. Jiang Y, Pico A, Cadene M, Chait BT, MacKinnin R (2001) Structure of the domain from the E. coli K+ channel and demonstration of its presence in the human BK channel. Neuron 29:593–601

    Article  PubMed  CAS  Google Scholar 

  28. Kerschensteiner D, Stocker M (1999) Heteromeric assembly of Kv2.1 with Kv9.3: effect on the state dependence of inactivation. Biophys J 77:248–257

    Article  PubMed  CAS  Google Scholar 

  29. Kerschensteiner D, Soto F, Stocker M (2005) Fluorescence measurements reveal stoichiometry of K+ channels formed by modulatory and delayed rectifier α-subunits. Proc Natl Acad Sci USA 102:6160–6165

    Article  PubMed  CAS  Google Scholar 

  30. Klement G, Persson AS, Nilssson J, Sahlholm K, Lavebratt-Holmquist C, Arhem P (2003) Truncation of the Shaker-like voltage-gated potassium channel, Kv1.1, causes megencephaly. Eur J Neurosci 18:3231–3240

    Article  PubMed  Google Scholar 

  31. Kreusch A, Pfaffinger PJ, Stevens CF, Choe S (1998) Crystal structure of the tetramerization domain of the Shaker potassium channel. Nature 392:945–948

    Article  PubMed  CAS  Google Scholar 

  32. Kurata HT, Fedida D (2006) A structural interpretation of voltage-gated potassium channel inactivation. Prog Biophys Mol Biol 92:185–208

    Article  PubMed  CAS  Google Scholar 

  33. Li M, Jan YN, Jan LY (1992) Specification of subunit assembly by the hydrophilic amino-terminal domain of the Shaker potassium channel. Science 257:1225–1240

    Article  PubMed  CAS  Google Scholar 

  34. Lien CC, Peter J (2003) Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons. J Neurosci 23:2058–2068

    PubMed  CAS  Google Scholar 

  35. Long SB, Campbell EB, MacKinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903

    Article  PubMed  CAS  Google Scholar 

  36. Ludwig J, Owen D, Pongs O (1997) Carboxy-terminal domain mediates assembly of the voltage-gated rat ether-a-go-go potassium channel. EMBO J 16:6337–6345

    Article  PubMed  CAS  Google Scholar 

  37. MacKinnon R (2004) Potassium channels and the atomic basis of selective ion conduction (Nobel lecture). Angew Chem Int Ed 43:4265–4277

    Article  CAS  Google Scholar 

  38. Marrion NV, Tavalin SJ (1998) Selective activation of Ca2+-activated K+ channels by colocalized Ca2+ channels in hippocampal neurons. Nature 395:900–905

    Article  PubMed  CAS  Google Scholar 

  39. Maylie B, Bissonnette E, Virk M, Adelman JP, Maylie JG (2002) Episodic ataxia type 1 mutations in the human Kv1.1 potassium channel alter hKvβ1-induced N-type inactivation. J Neurosci 22:4786–4793

    PubMed  CAS  Google Scholar 

  40. Nadal MS, Ozaita A, Amarillo Y, Vega-Saenz de Miera E, Ma Y, Mo W, Goldberg EM, Misumi Y, Ikehara Y, Neubert TA, Rudy B (2003) The CD26-related dipeptidyl aminopeptidase-like protein DPPX is a critical component of neuronal A-type K+ channels. Neuron 37:449–461

    Article  PubMed  CAS  Google Scholar 

  41. Peters HC, Hua H, Pongs O, Storm JF, Isbrandt D (2005) Conditional transgenic suppression of M channels in mouse brain reveals functions in neuronal excitability, resonance and behaviour. Nat Neurosci 8:51–60

    Article  PubMed  CAS  Google Scholar 

  42. Pongs O (1999) Voltage-gated potassium channels: from hyperexcitability to excitement. FEBS Lett 452:31–35

    Article  PubMed  CAS  Google Scholar 

  43. Post MA, Kirsch GE, Brown AM (1996) Kv2.1 and electrically silent Kv6.1 potassium channel subunits combine and express a novel current. FEBS Lett 399:177–182

    Article  PubMed  CAS  Google Scholar 

  44. Rettig J, Heinemann SH, Wunder F, Lorra C, Parcej DN, Dolly JO, Pongs O (1994) Inactivation properties of voltage-gated K+ channels altered by presence of beta-subunit. Nature 369:289–294

    Article  PubMed  CAS  Google Scholar 

  45. Roeper J, Lorra C, Pongs O (1997) Frequency-dependent inactivation of mammalian A-type K+ channel Kv1.4 regulated by Ca2+/calmodulin-dependent protein kinase. J Neurosci 17:3379–3391

    PubMed  CAS  Google Scholar 

  46. Rudy B, McBain CJ (2001) Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing. Trends Neurosci 24:517–526

    Article  PubMed  CAS  Google Scholar 

  47. Salinas M, Duprat F, Heurteaux C, Hugnot JP, Lazdunski M (1997) New modulatory alpha subunits for mammalian Shab K+ channels. J Biol Chem 272:24371–24379

    Article  PubMed  CAS  Google Scholar 

  48. Schmitt N, Schwarz M, Peretz A, Abibtol I, Attali B, Pongs O (2000) A recessive C-terminal Jervell and Lange-Nielsen mutation of the KCNQ1 channel impairs subunit assembly. EMBO J 19:332–340

    Article  PubMed  CAS  Google Scholar 

  49. Schoppa NE, Westbrook GL (1999) Regulation of synaptic timing in the olfactory bulb by an A-type potassium current. Nat Neurosci 2:1106–1113

    Article  PubMed  CAS  Google Scholar 

  50. Shao LR, Halvorsrud R, Borg-Graham L, Storm JF (1999) The role of BK-type Ca2+-dependent K+ channels in spike broadening during repetitive firing in rat hippocampal pyramidal cells. J Physiol 521:135–146

    Article  PubMed  CAS  Google Scholar 

  51. Steinlein O (2004) Genetic mechanisms that underlie epilepsy. Nat Rev Neurosci 5:400–408

    Article  PubMed  CAS  Google Scholar 

  52. Tan YP, Llano I (1999) Modulation by K+ channels of action potential-evoked intracellular Ca2+ concentration rises in rat cerebellar basket cell axons. J Physiol 520:65–78

    Article  PubMed  CAS  Google Scholar 

  53. Vogalis F, Storm JF, Lancaster B (2003) SK channels and the varieties of slow after-hyperpolarizations in neurons. Eur J Neurosci 18:3155–3166

    Article  PubMed  Google Scholar 

  54. Wakerley JB, Poulain DA, Brown D (1978) Comparison of firing patterns in oxytocin- and vasopressin-releasing neurones during progressive dehydration. Brain Res 148:425–440

    Article  PubMed  CAS  Google Scholar 

  55. Wang H, Kunkel DD, Martin TM, Schwartzkroin PA, Tempel BL (1994) Localization of Kv1.1 and Kv1.2, two channel proteins, two synapzic terminals, somata and dendrites in the mouse brain. J Neurosci 14:4588–4599

    PubMed  CAS  Google Scholar 

  56. Watanabe S, Hofmann DA, Migliore M, Johnston D (2002) Dendritic K+ channels contribute to spike-timing dependent long-term potentiation in hippocampal pyramidal neurons. Proc Natl Acad Sci USA 99:8366–8371

    Article  PubMed  CAS  Google Scholar 

  57. Wheal HV, Bernard C, Chad JE, Cannon RC (1998) Pro-epileptic changes in synaptic function can be accompanied by pro-epileptic changes in neuronal excitability. Trends Neurosci 21:167–174

    Article  PubMed  CAS  Google Scholar 

  58. Zhang L, McBain CJ (1995) Voltage-gated potassium currents in stratum oriens-alveus inhibitory neurones of the rat CA1 hippocampus. J Physiol 488:647–660

    PubMed  CAS  Google Scholar 

  59. Zhou L, Chiu SY (2001) Computer model for action potential propagation through branch point in myelinated nerves. J Neurophysiol 85:197–210

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Pongs .

Editor information

Mark G. Darlison

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pongs, O. (2007). Regulation of Excitability by Potassium Channels. In: Darlison, M.G. (eds) Inhibitory Regulation of Excitatory Neurotransmission. Results and Problems in Cell Differentiation, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/400_2007_032

Download citation

Publish with us

Policies and ethics