Skip to main content

The Three Families of Respiratory NADH Dehydrogenases

  • Chapter
  • First Online:
Bioenergetics

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 45))

Abstract

Most reducing equivalents extracted from foodstuffs during oxidative metabolism are fed into the respiratory chains of aerobic bacteria and mitochondria by NADH:quinone oxidoreductases. Three families of enzymes can perform this task and differ remarkably in their complexity and role in energy conversion. Alternative or NDH-2-type NADH dehydrogenases are simple one subunit flavoenzymes that completely dissipate the redox energy of the NADH/quinone couple. Sodium-pumping NADH dehydrogenases (Nqr) that are only found in procaryotes contain several flavins and are integral membrane protein complexes composed of six different subunits. Proton-pumping NADH dehydrogenases (NDH-1 or complex I) are highly complicated membrane protein complexes, composed of up to 45 different subunits, that are found in bacteria and mitochondria. This review gives an overview of the origin, structural and functional properties and physiological significance of these three types of NADH dehydrogenase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdrakhmanova A, Zickermann V, Bostina M, Radermacher M, Schägger H, Kerscher S, Brandt U (2004) Subunit composition of mitochondrial complex I from the yeast Yarrowia lipolytica. Biochim Biophys Acta 1658:148–156

    PubMed  CAS  Google Scholar 

  • Argyrou A, Blanchard JS (2004) Flavoprotein disulfide reductases: advances in chemistry and function. Progr Nuc Ac Res Mol Biol 78:89–142

    CAS  Google Scholar 

  • Argyrou A, Sun G, Palfey BA, Blanchard JS (2003) Catalysis of diaphorase reactions by Mycobacterium tuberculosis lipoamide dehydrogenase occurs at the EH4 level. Biochem 42:2218–2228

    CAS  Google Scholar 

  • Bai Y, Hájek P, Chomyn A, Seo BB, Matsuno-Yagi A, Yagi T, Attardi G (2001) Lack of complex I activity in human cells carrying a mutation in MtDNA-encoded ND4 subunit is corrected by the Saccharomyces cerevisiae NADH-quinone oxidoreductase (NDI1) gene. J Biol Chem 276:38808–38813

    PubMed  CAS  Google Scholar 

  • Bakker B, Bro C, Kötter P, Luttik MAH, van Dijken JP, Pronk JT (2000) The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. J Bacteriol 182:4730–4737

    PubMed  CAS  Google Scholar 

  • Bandeiras TM, Salgueiro C, Kletzin A, Gomes CM, Teixeira M (2002) Acidianus ambivalens type-II NADH dehydrogenase: genetic characterisation and identification of the flavin moiety as FMN. FEBS Lett 531:273–277

    PubMed  CAS  Google Scholar 

  • Barquera B, Häse CC, Gennis RB (2001) Expression and mutagenesis of the NqrC subunit of the NQR respiratory Na+ pump from Vibrio cholerae with covalently attached FMN. FEBS Lett 492:45–49

    PubMed  CAS  Google Scholar 

  • Barquera B, Hellwig P, Zhou WD, Morgan JE, Häse CC, Gosink KK, Nilges M, Bruesehoff PJ, Roth A, Lancaster CRD, Gennis RB (2002a) Purification and characterization of the recombinant Na+-translocating NADH:quinone oxidoreductase from Vibrio cholerae. Biochem 41:3781–3789

    CAS  Google Scholar 

  • Barquera B, Morgan JE, Lukoyanov D, Scholes CP, Gennis RB, Nilges MJ (2003) X- and W-band EPR and Q-band ENDOR studies of the flavin radical in the Na+-translocating NADH:quinone oxidoreductase from Vibrio cholerae. J Am Chem Soc 125:265–275

    PubMed  CAS  Google Scholar 

  • Barquera B, Nilges MJ, Morgan JE, Ramirez-Silva L, Zhou WD, Gennis RB (2004) Mutagenesis study of the 2Fe-2S center and the FAD binding site of the Na+-translocating NADH:ubiquinone oxidoreductase from Vibrio cholerae. Biochem 43:12322–12330

    CAS  Google Scholar 

  • Barquera B, Ramirez-Silva L, Morgan JE, Nilges MJ (2006) A new flavin radical signal in the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae – An EPR/electron nuclear double resonance investigation of the role of the covalently bound flavins in subunits B and C. J Biol Chem 281:36482–36491

    PubMed  CAS  Google Scholar 

  • Barquera B, Zhou WD, Morgan JE, Gennis RB (2002b) Riboflavin is a component of the Na+-pumping NADH-quinone oxidoreductase from Vibrio cholerae. Proc Natl Acad Sci USA 99:10322–10324

    PubMed  CAS  Google Scholar 

  • Bäumer S, Ide T, Jacobi C, Johann A, Gottschalk G, Deppenmeier U (2000) The F420H2 dehydrogenase from Methanosarcina mazei is a redox-driven proton pump closely related to NADH dehydrogenases. J Biol Chem 275:17968–17973

    PubMed  Google Scholar 

  • Beattie P, Tan K, Bourne RM, Leach D, Rich PR, Ward FB (1994) Cloning and sequencing of four structural genes for the Na+-translocating NADH-ubiquinone oxidoreductase of Vibrio alginolyticus. FEBS Lett 356:333–338

    PubMed  CAS  Google Scholar 

  • Belogrudov G, Hatefi Y (1994) Catalytic sector of complex I (NADH:ubiquinone oxidoreductase): subunit stoichiometry and substrate-induced conformation changes. Biochem 33:4571–4576

    CAS  Google Scholar 

  • Bertsova YV, Bogachev AV (2004) The origin of the sodium-dependent NADH oxidation by the respiratory chain of Klebsiella pneumoniae. FEBS Lett 563:207–212

    PubMed  CAS  Google Scholar 

  • Bertsova YV, Bogachev AV, Skulachev VP (2001) Noncoupled NADH:ubiquinone oxidoreductase of Azotobacter vinelandii is required for diazotrophic growth at high oxygen concentrations. J Bacteriol 183:6869–6874

    PubMed  CAS  Google Scholar 

  • Bogachev AV, Bertsova YV, Barquera B, Verkhovsky MI (2001) Sodium-dependent steps in the redox reactions of the Na+-motive NADH:quinone oxidoreductase from Vibrio harveyi. Biochem 40:7318–7323

    CAS  Google Scholar 

  • Bogachev AV, Bertsova YV, Bloch DA, Verkhovsky MI (2006) Thermodynamic properties of the redox centers of Na+-translocating NADH:quinone oxidoreductase. Biochem 45:3421–3428

    CAS  Google Scholar 

  • Bogachev AV, Bertsova YV, Ruuge EK, Wikstrom M, Verkhovsky MI (2002) Kinetics of the spectral changes during reduction of the Na+-motive NADH:quinone oxidoreductase from Vibrio harveyi. Biochim Biophys Acta 1556:113–120

    PubMed  CAS  Google Scholar 

  • Bogachev AV, Murtazina RA, Skulachev VP (1996) H+/e stoichiometry for NADH dehydrogenase I and dimethyl sulfoxide reductase in anaerobically grown Escherichia coli cells. J Bacteriol 178:6233–6237

    PubMed  CAS  Google Scholar 

  • Bogachev AV, Murtazina RA, Skulachev VP (1997) The Na+/e stoichiometry of the Na+-motive NADH:quinone oxidoreductase in Vibrio alginolyticus. FEBS Lett 409:475–477

    PubMed  CAS  Google Scholar 

  • Bogachev AV, Verkhovsky MI (2005) Na+-translocating NADH:quinone oxidoreductase: Progress achieved and prospects of investigations. Biochemistry-Moscow 70:143–149

    PubMed  CAS  Google Scholar 

  • Böttcher B, Scheide D, Hesterberg M, Nagel-Steger L, Friedrich T (2002) A novel, enzymatically active conformation of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). J Biol Chem 277:17970–17977

    PubMed  Google Scholar 

  • Brandt U (2006) Energy converting NADH:quinone oxidoreductases. Annu Rev Biochem 75:69–92

    PubMed  CAS  Google Scholar 

  • Brito JA, Bandeiras TM, Teixeira M, Vonrhein C, Archer M (2006) Crystallisation and preliminary structure determination of a NADH:quinone oxidoreductase from the extremophile Acidianus ambivalens. Biochim Biophys Acta 1764:842–845

    PubMed  CAS  Google Scholar 

  • Brüggemann H, Falinski F, Deppenmeier U (2000) Structure of the F420H2:quinone oxidoreductase of Archaeoglobus fulgidus identification and overproduction of the F420H2-oxidizing subunit. Eur J Biochem 267:5810–5814

    PubMed  Google Scholar 

  • Carroll J, Fearnley IM, Shannon RJ, Hirst J, Walker JE (2003) Analysis of the subunit composition of complex I from bovine heart mitochondria. Mol Cell Proteomics 2:117–126

    PubMed  CAS  Google Scholar 

  • Carroll J, Fearnley IM, Skehel JM, Shannon RJ, Hirst J, Walker JE (2006a) Bovine complex I is a complex of 45 different subunits. J Biol Chem 281:32724–32727

    PubMed  CAS  Google Scholar 

  • Carroll J, Fearnley IM, Walker JE (2006b) Definition of the mitochondrial proteome by measurement of molecular masses of membrane proteins. Proc Natl Acad Sci USA 103:16170–16175

    PubMed  CAS  Google Scholar 

  • Darrouzet E, Issartel JP, Lunardi J, Dupuis A (1998) The 49-kDa subunit of NADH-ubiquinone oxidoreductase (complex I) is involved in the binding of piericidin and rotenone, two quinone-related inhibitors. FEBS Lett 431:34–38

    PubMed  CAS  Google Scholar 

  • Degli Esposti M (1998) Inhibitors of NADH-ubiquinone reductase: an overview. Biochim Biophys Acta 1364:222–235

    PubMed  CAS  Google Scholar 

  • Dimroth P (1986) Preparation, characterization, and reconstitution of oxaloacetate decarboxylase from Klebsiella aerogenes, a sodium pump. Methods Enzymol 125:530–540

    PubMed  CAS  Google Scholar 

  • Dimroth P, Thomer A (1989) A primary respiratory Na+ pump of an anaerobic bacterium: the Na+-dependent NADH:quinone oxidoreductase of Klebsiella pneumononiae. Arch Microbiol 151:439–444

    PubMed  CAS  Google Scholar 

  • Dudkina NV, Eubel H, Keegstra W, Boekema EJ, Braun HP (2005) Structure of a mitochondrial supercomplex formed by respiratory-chain complexes I and III. Proc Natl Acad Sci USA 102:3225–3229

    PubMed  CAS  Google Scholar 

  • Duffy EB, Barquera B (2006) Membrane topology mapping of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae by PhoA-green fluorescent protein fusion analysis. J Bacteriol 188:8343–8351

    PubMed  CAS  Google Scholar 

  • Eschemann A, Galkin A, Oettmeier W, Brandt U, Kerscher S (2005) HDQ (1-hydroxy-2-dodecyl-4(1H)quinolone), a high affinity inhibitor for mitochondrial alternative NADH dehydrogenase. J Biol Chem 280:3138–3142

    PubMed  CAS  Google Scholar 

  • Faig M, Bianchet MA, Talalay P, Chen S, Winski S, Ross D, Amzel LM (2000) Structures of recombinant human and mouse NAD(P)H:quinone oxidoreductases: Species comparison and structural changes with substrate binding and release. Proc Natl Acad Sci USA 97:3177–3182

    PubMed  CAS  Google Scholar 

  • Fang J, Beattie DS (2002) Novel FMN-containing rotenone-insensitive NADH dehydrogenase from Trypanosoma brucei mitochondria: isolation and characterization. Biochem 41:3065–3072

    CAS  Google Scholar 

  • Fang J, Beattie DS (2003a) External alternative NADH dehydrogenase of Saccharomyces cerevisiae: a potential source of superoxide. Free Radic Biol Med 34:478–488

    PubMed  CAS  Google Scholar 

  • Fang J, Beattie DS (2003b) Identification of a gene encoding a 54 kDa alternative NADH dehydrogenase in Trypanosoma brucei. Mol Biochem Parasitol 127:73–77

    PubMed  CAS  Google Scholar 

  • Fang J, Wang Y, Beattie DS (2001) Isolation and characterization of complex I, rotenone-sensitive NADH:ubiquinone oxidoreductase, from the procyclic forms of Trypanosoma brucei. Eur J Biochem 268:3075–3082

    PubMed  CAS  Google Scholar 

  • Fearnley IM, Walker JE (1992) Conservation of sequences of subunits of mitochondrial complex I and their relationships with other proteins. Biochim Biophys Acta 1140:105–134

    PubMed  CAS  Google Scholar 

  • Finel M, Skehel JM, Albracht SPJ, Fearnley IM, Walker JE (1992) Resolution of NADH:ubiquinone oxidoreductase from bovine heart mitochondria into two subcomplexes, one of which contains the redox centers of the enzyme. Biochem 31:11425–11434

    CAS  Google Scholar 

  • Friedrich T (1998) The NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli. Biochim Biophys Acta 1364:134–146

    PubMed  CAS  Google Scholar 

  • Friedrich T, Weiss H (1997) Modular evolution of the respiratory NADH:ubiquinone oxidoreductase and the origin of its modules. J Theor Biol 187:529–540

    PubMed  CAS  Google Scholar 

  • Galkin A, Brandt U (2005) Superoxide radical formation by pure complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica. J Biol Chem 280:30129–30135

    PubMed  CAS  Google Scholar 

  • Galkin A, Dröse S, Brandt U (2006) The proton pumping stoichiometry of purifiedmitochondrial complex I reconstituted into proteoliposomes. Biochim Biophys Acta 1757:1575–1581

    PubMed  CAS  Google Scholar 

  • Gemperli AC, Dimroth P, Steuber J (2002) The respiratory complex I (NDH-I) from Klebsiella pneumoniae, a sodium pump. J Biol Chem 277:33811–33817

    PubMed  CAS  Google Scholar 

  • Gemperli AC, Dimroth P, Steuber J (2003) Sodium ion cycling mediates energy coupling beetween complex I and ATP synthase. Proc Natl Acad Sci USA 100:839–844

    PubMed  CAS  Google Scholar 

  • Goldstein L (1976) Kinetic behavior of immobilized enzyme systems. Methods Enzymol 44:397–443

    PubMed  CAS  Google Scholar 

  • Gomes CM, Bandeiras TM, Teixeira M (2001) A new type-II NADH dehydrogenase from the archaeon Acidianus ambivalens: characterization and in vitro reconstitution of the respiratory chain. J Bioenerg Biomembr 33:1–8

    PubMed  CAS  Google Scholar 

  • Green J, Anjum MF, Guest JR (1997) Regulation of the ndh gene of Escherichia coli by integration host factor and a novel regulator, Arr. Microbiology 143:2865–2875

    PubMed  CAS  Google Scholar 

  • Greenamyre JT, Sherer TB, Betarbet R, Panov A (2001) Complex I and Parkinson's disease. IUBMB Life 52:135–141

    Article  PubMed  CAS  Google Scholar 

  • Grigorieff N (1998) Three-dimensional structure of bovine NADH:ubiquinone oxidoreductase (complex I) at 22 Å in ice. J Mol Biol 277:1033–1046

    PubMed  CAS  Google Scholar 

  • Guenebaut V, Schlitt A, Weiss H, Leonard K, Friedrich T (1998) Consistent structure between bacterial and mitochondrial NADH:ubiquinone oxidoreductase (complex I). J Mol Biol 276:105–112

    PubMed  CAS  Google Scholar 

  • Guenebaut V, Vincentelli R, Mills D, Weiss H, Leonard K (1997) Three-dimensional structure of NADH dehydrogenase from Neurospora crassa by electron microscopy and conical tilt reconstruction. J Mol Biol 265:409–418

    PubMed  CAS  Google Scholar 

  • Hajduk S, Adler B, Bertrand K, Fearon K, Hager K, Hancock K, Harris M, Blanc AL, Moore R, Pollard V, Priest J, Wood Z (1992) Molecular biology of African trypanosomes: development of new strategies to combat an old disease. Am J Med Sci 303:258–270

    PubMed  CAS  Google Scholar 

  • Häse CC, Barquera B (2001) Role of sodium bioenergetics in Vibrio cholerae. Biochim Biophys Acta 1505:169–178

    PubMed  Google Scholar 

  • Häse CC, Fedorova ND, Galperin MY, Dibrov PA (2001) Sodium ion cycle in bacterial pathogens: evidence from cross-genome comparisons. Microbiol Mol Biol Rev 65:353–370

    PubMed  Google Scholar 

  • Häse CC, Mekalanos JJ (1999) Effects of changes in membrane sodium flux on virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci USA 96:3183–3187

    PubMed  Google Scholar 

  • Hayashi M, Hirai K, Unemoto T (1995) Sequencing and the alignment of structural genes in the Nqr operon encoding the Na+-translocating NADH-quinone reductase from Vibrio alginolyticus. FEBS Lett 363:75–77

    PubMed  CAS  Google Scholar 

  • Hayashi M, Nakayama Y, Unemoto T (2001a) Recent progress in the Na+-translocating NADH-quinone reductase from the marine Vibrio alginolyticus. Biochim Biophys Acta 1505:37–44

    PubMed  CAS  Google Scholar 

  • Hayashi M, Nakayama Y, Yasui M, Maeda M, Furuishi K, Unemoto T (2001b) FMN is covalently attached to a threonine residue in the NqrB and NqrC subunits of Na+-translocating NADH-quinone reductase from Vibrio alginolyticus. FEBS Lett 488:5–8

    PubMed  CAS  Google Scholar 

  • Hayashi M, Shibata N, Nakayama Y, Yoshikawa K, Unemoto T (2002) Korormicin insensitivity in Vibrio alginolyticus is correlated with a single point mutation of Gly-140 in the NqrB subunit of the Na+-translocating NADH-quinone reductase. Arch Biochem Biophys 401:173–177

    PubMed  CAS  Google Scholar 

  • Holt PJ, Morgan DJ, Sazanov LA (2003) The location of NuoL and NuoM subunits in the membrane domain of the Escherichia coli complex I – implications for the mechanism of proton pumping. J Biol Chem 278:43114–43120

    PubMed  CAS  Google Scholar 

  • Kao MC, Nakamaru-Ogiso E, Matsuno-Yagi A, Yagi T (2005) Characterization of the membrane domain subunit NuoK (ND4L) of the NADH-quinone oxidoreductase from Escherichia coli. Biochem 44:9545–9554

    CAS  Google Scholar 

  • Kerscher S (2000) Diversity and origin of alternative NADH:ubiquinone oxidoreductases. Biochim Biophys Acta 1459:274–283

    PubMed  CAS  Google Scholar 

  • Kerscher S, Eschemann A, Okun PM, Brandt U (2001a) External alternative NADH:ubiquinone oxidoreductase redirected to the internal face of the mitochondrial inner membrane rescues complex I deficiency in Yarrowia lipolytica. J Cell Sci 114:3915–3921

    PubMed  CAS  Google Scholar 

  • Kerscher S, Kashani-Poor N, Zwicker K, Zickermann V, Brandt U (2001b) Exploring the catalytic core of complex I by Yarrowia lipolytica yeast genetics. J Bioenerg Biomembr 33:187–196

    PubMed  CAS  Google Scholar 

  • Kerscher S, Okun JG, Brandt U (1999) A single external enzyme confers alternative NADH:ubiquinone oxidoreductase activity in Yarrowia lipolytica. J Cell Sci 112:2347–2354

    PubMed  CAS  Google Scholar 

  • Kervinen M, Patsi J, Finel M, Hassinen IE (2004) A pair of membrane-embedded acidic residues in the NuoK subunit of Escherichia coli NDH-1, a counterpart of the ND4L subunit of the mitochondrial complex I, are required for high ubiquinone reductase activity. Biochem 43:773–781

    CAS  Google Scholar 

  • Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: A primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136

    PubMed  CAS  Google Scholar 

  • Kogure K (1998) Bioenergetics of marine bacteria. Curr Opin Biotechnol 9:278–282

    PubMed  CAS  Google Scholar 

  • Krebs W, Steuber J, Gemperli AC, Dimroth P (1999) Na+ translocation by the NADH:ubiquinone oxidoreductase (complex I) from Klebsiella pneumoniae. Mol Microbiol 33:590–598

    PubMed  CAS  Google Scholar 

  • Kussmaul L, Hirst J (2006) The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci USA 103:7607–7612

    PubMed  CAS  Google Scholar 

  • Lagunas R (1986) Misconceptions about the energy metabolism of Saccharomyces cerevisiae. Yeast 2:221–228

    PubMed  CAS  Google Scholar 

  • Lesk AM (1995) NAD-binding domains of dehydrogenases. Curr Opin Struct Biol 5:775–783

    PubMed  CAS  Google Scholar 

  • Lin PC, Puhar A, Turk K, Piligkos S, Bill E, Neese F, Steuber J (2005) A vertebrate-type ferredoxin domain in the Na+-translocating NADH dehydrogenase from Vibrio cholerae. J Biol Chem 280:22560–22563

    PubMed  CAS  Google Scholar 

  • Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157

    PubMed  CAS  Google Scholar 

  • Luttik MAH, Overkamp KM, Kötter P, de Vries S, van Dijken P, Pronk JT (1998) The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH. J Biol Chem 273:24529–24534

    PubMed  CAS  Google Scholar 

  • Magnitsky S, Toulokhonova L, Yano T, Sled VD, Hagerhall C, Grivennikova VG, Burbaev DS, Vinogradov AD, Ohnishi T (2002) EPR characterization of ubisemiquinones and iron–sulfur cluster N2, central components of the energy coupling in the NADH-ubiquinone oxidoreductase (complex I) in situ. J Bioenerg Biomembr 34:193–208

    PubMed  CAS  Google Scholar 

  • Mamedova AA, Holt PJ, Carroll J, Sazanov LA (2004) Substrate-induced conformational change in bacterial complex I. J Biol Chem 279:23830–23836

    PubMed  CAS  Google Scholar 

  • Marres CAM, de Vries S, Grivell LA (1991) Isolation and inactivation of the nuclear gene encoding the rotenone-insensitive internal NADH:ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae. Eur J Biochem 195:857–862

    PubMed  CAS  Google Scholar 

  • Mathiesen C, Hägerhäll C (2002) Transmembrane topology of the NuoL, M and N subunits of NADH:quinone oxidoreductase and their homologues among membrane-bound hydrogenases and bona fide antiporters. Biochim Biophys Acta 1556:121–132

    PubMed  CAS  Google Scholar 

  • Matsushita K, Ohnishi T, Kaback HR (1987) NADH-ubiquinone oxidoreductases of the Escherichia coli aerobic respiratory chain. Biochem 26:7732–7737

    CAS  Google Scholar 

  • Melo AM, Bandeiras TM, Teixeira M (2004) New insights into type II NAD(P)H:quinone oxidoreductases. Microbiol Mol Biol Rev 68:603–616

    PubMed  CAS  Google Scholar 

  • Melo AM, Duarte M, Möllers IM, Prokisch H, Dolan PL, Pinto L, Nelson MA, Videira A (2001) The external calcium-dependent NADPH dehydrogenase from Neurospora crassa mitochondria. J Biol Chem 276:3947–3951

    PubMed  CAS  Google Scholar 

  • Melo AM, Duarte M, Videira A (1999) Primary structure and characterisation of a 64-kDa NADH dehydrogenase from the inner membrane of Neurospora crassa mitochondria. Biochim Biophys Acta 1412:282–287

    PubMed  CAS  Google Scholar 

  • Michalecka AM, Svensson AS, Johansson FI, Agius SC, Johanson U, Brennicke A, Binder S, Rasmusson AG (2003) Arabidopsis genes encoding mitochondrial type II NAD(P)H dehydrogenases have different evolutionary origin and show distinct responses to light. Plant Physiol 133:642–652

    PubMed  CAS  Google Scholar 

  • Modjtahedi N, Giordanetto F, Madeo F, Kroemer G (2006) Apoptosis-inducing factor: vital and lethal. Trends Cell Biol 16:264–272

    PubMed  CAS  Google Scholar 

  • Møller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol 52:561–591

    Google Scholar 

  • Moser CC, Farid TA, Chobot SE, Dutton PL (2006) Electron tunneling chains of mitochondria. Biochim Biophys Acta 1757:1096–1109

    PubMed  CAS  Google Scholar 

  • Mrazek J, Spormann AM, Karlin S (2006) Genomic comparisons among gamma-proteobacteria. Env Microbiol 8:273–288

    CAS  Google Scholar 

  • Nakamaru-Ogiso E, Seo BB, Yagi T, Matsuno-Yagi A (2003) Amiloride inhibition of the proton-translocating NADH-quinone oxidoreductase of mammals and bacteria. FEBS Lett 14:43–46

    Google Scholar 

  • Nakayama Y, Hayashi M, Unemoto T (1998) Identification of six subunits constituting Na+-translocating NADH-quinone reductase from the marine Vibrio alginolyticus. FEBS Lett 422:240–242

    PubMed  CAS  Google Scholar 

  • Nakayama Y, Hayashi M, Unemoto T, Yoshikawa K, Mochida K (1999) Inhibitor studies of a new antibiotic, korormicin, 2-n-heptyl-4-hydroxyquinoline N-oxide and Ag+ toward the Na+-translocating NADH-quinone reductase from the marine Vibrio alginolyticus. Biol Pharm Bull 22:1064–1067

    PubMed  CAS  Google Scholar 

  • Nakayama Y, Yasui M, Sugahara K, Hayashi M, Unemoto T (2000) Covalently bound flavin in the NqrB and NqrC subunits of Na+-translocating NADH-quinone reductase from Vibrio alginolyticus. FEBS Lett 474:165–168

    PubMed  CAS  Google Scholar 

  • Nordman T, Xia L, Björkhem-Bergman L, Damdimopoulos A, Nalvarte I, Arnér E, Spyrou G, Eriksson L, Björnstedt M, Olsson J (2003) Regeneration of the antioxidant ubiquinol by lipoamide dehydrogenase, thioredoxin reductase and glutathione reductase. BioFactors 18:45–50

    PubMed  CAS  Google Scholar 

  • Notredame C, Higgins D, Herringa J (2000) T-Coffee: a novel method for multiple sequence alignments. J Mol Biol 302:205–217

    PubMed  CAS  Google Scholar 

  • Ohnishi T (1998) Iron–sulfur clusters/semiquinones in complex I. Biochim Biophys Acta 1364:186–206

    PubMed  CAS  Google Scholar 

  • Okun JG, Lümmen P, Brandt U (1999) Three classes of inhibitors share a common binding domain in mitochondrial complex I (NADH:ubiquinone oxidoreductase). J Biol Chem 274:2625–2630

    PubMed  CAS  Google Scholar 

  • Ouali M, King RD (2000) Cascaded multiple classifiers for secondary structure prediction. Protein Sci 9:1162–1176

    PubMed  CAS  Google Scholar 

  • Peng G, Fritzsch G, Zickermann V, Schägger H, Mentele R, Lottspeich F, Bostina M, Radermacher M, Huber R, Stetter KO, Michel H (2003) Isolation, characterization and electron microscopic single particle analysis of the NADH:ubiquinone oxidoreductase (complex I) from the hyperthermophilic eubacterium aquifex aeolicus. Biochem 42:3032–3039

    CAS  Google Scholar 

  • Pfenninger-Li XD, Albracht SPJ, van Belzen R, Dimroth P (1996) NADH:ubiquinone oxidoreductase of Vibrio alginolyticus: purification, properties, and reconstitution of the Na+ pump. Biochem 35:6233–6242

    CAS  Google Scholar 

  • Prommeenate P, Lennon AM, Markert C, Hippler M, Nixon PJ (2004) Subunit composition of NDH-1 complexes of Synechocystis sp PCC 6803 – identification of two new ndh gene products with nuclear-encoded homologues in the chloroplast Ndh complex. J Biol Chem 279:28165–28173

    PubMed  CAS  Google Scholar 

  • Radermacher M, Ruiz T, Clason T, Benjamin S, Brandt U, Zickermann V (2006) The three-dimensional structure of complex I from Yarrowia lipolytica: A highly dynamic enzyme. J Struct Biol 154:269–279

    PubMed  CAS  Google Scholar 

  • Raghavendra AS, Padmasree K (2003) Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Trends Plant Sci 8:546–553

    PubMed  CAS  Google Scholar 

  • Rapisarda VA, Chehín RN, De Las Rivas J, Rodriguez-Montelongo L, Farías RN, Massa EM (2002) Evidence for Cu(I)-thiolate ligation and prediction of a putative copper-binding site in the Escherichia coli NADH dehydrogenase-2. Arch Biochem Biophys 405:87–94

    PubMed  CAS  Google Scholar 

  • Rapisarda VA, Rodríguez-Montelongo L, Farías RN, Massa EM (1999) Characterization of an NADH-linked cupric reductase activity from the Escherichia coli respiratory chain. Arch Biochem Biophys 370:143–150

    PubMed  CAS  Google Scholar 

  • Rasmussen T, Scheide D, Brors B, Kintscher L, Weiss H, Friedrich T (2001) Identification of two tetranuclear FeS clusters on the ferredoxin-type subunit of NADH:ubiquinone oxidoreductase (complex I). Biochem 40:6124–6131

    CAS  Google Scholar 

  • Rasmusson AG, Svensson AS, Knoop V, Grohmann L, Brennicke A (1999) Homologues of yeast and bacterial rotenone-insensitive NADH dehydrogenases in higher eukaryotes: two enzymes are present in potato mitochondria. Plant J 20:79–87

    PubMed  CAS  Google Scholar 

  • Ravanel P, Creuzet S, Tissut M (1990) Inhibitory effect of hydroxyflavones on the exogenous NADH dehydrogenase of plant mitochondrial inner membranes. Phytochemistry 29:441–445

    CAS  Google Scholar 

  • Rich PR, Meunier B, Ward FB (1995) Predicted structure and possible ionmotive mechanism of the sodium-linked NADH-ubiquinone oxidoreductase of Vibrio alginolyticus. FEBS Lett 375:5–10

    PubMed  CAS  Google Scholar 

  • Rodríguez-Montelongo L, Volentini SI, Fárias RN, Massa EM, Rapisarda VA (2006) The Cu(II)-reductase NADH dehydrogenase-2 of Escherichia coli improves the bacterial growth in extreme copper concentrations and increases the resistance to the damage caused by copper and hydroperoxide. Arch Biochem Biophys 451:1–7

    PubMed  Google Scholar 

  • Rumeau D, Bécuwe-Linka N, Beyly A, Louwagie M, Peltier G (2005) New subunits NDH-M, -N, and -O, encoded by nuclear genes, are essential for plastid Ndh complex functioning in higher plants. Plant Cell 17:219–232

    PubMed  CAS  Google Scholar 

  • Sazanov LA, Carroll J, Holt P, Toime L, Fearnley IM (2003) A role for native lipids in the stabilization and two-dimensional crystallization of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). J Biol Chem 278:19483–19491

    PubMed  CAS  Google Scholar 

  • Sazanov LA, Hinchliffe P (2006) Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311:1430–1436

    PubMed  CAS  Google Scholar 

  • Sazanov LA, Peak-Chew SY, Fearnley IM, Walker JE (2000) Resolution of the membrane domain of bovine complex I into subcomplexes: implications for the structural organization of the enzyme. Biochem 39:7229–7235

    CAS  Google Scholar 

  • Schmid R, Gerloff D (2004) Functional properties of the alternative NADH:ubiquinone oxidoreductase from E. coli through comparative 3-D modelling. FEBS Lett 578:163–168

    PubMed  CAS  Google Scholar 

  • Schuler F, Yano T, Di Bernardo S, Yagi T, Yankovskaya V, Singer TP, Casida JE (1999) NADH-quinone oxidoreductase: PSST subunit couples electron transfer from iron–sulfur cluster N2 to quinone. Proc Natl Acad Sci USA 96:4149–4153

    PubMed  CAS  Google Scholar 

  • Seo BB, Marella M, Yagi T, Matsuno-Yagi A (2006a) The single subunit NADH dehydrogenase reduces generation of reactive oxygen species from complex I. FEBS Lett 580:6105–6108

    PubMed  CAS  Google Scholar 

  • Seo BB, Matsuno-Yagi A, Yagi T (1999) Modulation of oxidative phosphorylation of human kidney 293 cells by transfection with the internal rotenone-insensitive NADH-quinone oxidoreductase (NDI1) gene of Saccharomyces cerevisiae. Biochim Biophys Acta 1412:56–65

    PubMed  CAS  Google Scholar 

  • Seo BB, Nakamaru-Ogiso E, Flotte TR, Matsuno-Yagi A, Yagi T (2006b) In vivo complementation of complex I by the yeast Ndi1 enzyme. J Biol Chem 281:14250–14255

    PubMed  CAS  Google Scholar 

  • Smith MA, Finel M, Korolik V, Mendz GL (2000) Characteristics of the aerobic respiratory chains of the microaerophiles Campylobacter jejuni and Helicobacter pylori. Arch Microbiol 174:1–10

    PubMed  CAS  Google Scholar 

  • Steuber J (2001) Na+ translocation by bacterial NADH:quinone oxidoreductases: an extension to the complex-I family of primary redox pumps. Biochim Biophys Acta 1505:45–56

    PubMed  CAS  Google Scholar 

  • Steuber J, Krebs W, Dimroth P (1997) The Na+-translocating NADH:ubiquinone oxidoreductase from Vibrio alginolyticus. Redox states of the FAD prosthetic group and mechanism of Ag+ inhibition. Eur J Biochem 249:770–776

    PubMed  CAS  Google Scholar 

  • Steuber J, Schmid C, Rufibach M, Dimroth P (2000) Na+ translocation by complex I (NADH:quinone oxidoreductase) of Escherichia coli. Mol Microbiol 35:428–434

    PubMed  CAS  Google Scholar 

  • Stolpe S, Friedrich T (2004) The Escherichia coli NADH:ubiquinone oxidoreductase (complex I) is a primary proton pump but may be capable of secondary sodium antiport. J Biol Chem 279:18377–18383

    PubMed  CAS  Google Scholar 

  • Susin SA, Lorenzo HK, Zamzami IM, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    PubMed  CAS  Google Scholar 

  • Swofford DL (1993) PAUP: phylogenetic analysis using parsimony version 3.1.1 (computer program). Illinois Natural History Survey, Champaign, Illinois

    Google Scholar 

  • Tarrío N, Beccera M, Cerdán ME, González Siso MI (2006a) Reoxidation of cytosolic NADPH in Kluyveromyces lactis. FEMS Yeast Res 6:371–380

    PubMed  Google Scholar 

  • Tarrío N, Cerdan ME, González Siso MI (2006b) Characterization of the second external alternative dehydrogenase from mitochondria of the respiratory yeast Kluyveromyces lactis. Biochim Biophys Acta 1757:1476–1484

    PubMed  Google Scholar 

  • Tokuda H, Unemoto T (1981) A respiration-dependent primary sodium extrusion system functioning at alkaline pH in the marine bacterium Vibrio alginolyticus. Biochem Biophys Res Comm 102:265–271

    PubMed  CAS  Google Scholar 

  • Tokuda H, Unemoto T (1984) Na+ is translocated at NADH-quinone oxidoreductase segment in the respiratory-chain of Vibrio alginolyticus. J Biol Chem 259:7785–7790

    PubMed  CAS  Google Scholar 

  • Trotter EW, Grant CM (2005) Overlapping roles of the cytoplasmic and mitochondrial redox regulatory systems in the yeast Saccharomyces cerevisiae. Eukar Cell 4:392–400

    CAS  Google Scholar 

  • Türk K, Puhar A, Neese F, Bill E, Gunter F, Steuber J (2004) NADH oxidation by the Na+-translocating NADH:quinone oxidoreductase from Vibrio cholerae – Functional role of the NqrF subunit. J Biol Chem 279:21349–21355

    PubMed  Google Scholar 

  • Uhlmann M, Friedrich T (2005) EPR signals assigned to Fe/S cluster N1c of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I) derive from cluster N1a. Biochem 44:1653–1658

    CAS  Google Scholar 

  • Unden G (1998) Transcriptional regulation and energetics of alternative respiratory pathways in facultatively anaerobic bacteria. Biochim Biophys Acta 1365:220–224

    CAS  Google Scholar 

  • Unden G, Bongaerts J (1997) Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim Biophys Acta 1320:217–234

    PubMed  CAS  Google Scholar 

  • Vahsen N, Cande C, Briere JJ, Bénit P, Joza N, Larochette N, Mastroberardino PG, Pequignot MO, Casares N, Lazar V, Feraud O, Debili N, Wissing S, Engelhardt S, Madeo F, Piacentini M, Penninger JM, Schägger H, Rustin P, Kroemer G (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23:4679–4689

    PubMed  CAS  Google Scholar 

  • Velázques I, Pardo JP (2001) Kinetic characterization of the rotenone-insensitive internal NADH:ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae. Arch Biochem Biophys 389:7–14

    Google Scholar 

  • Wackwitz B, Bongaerts J, Goodman SD, Unden G (1999) Growth phase-dependent regulation of nuoA-N expression in Escherichia coli K-12 by the Fis protein: upstream binding sites and bioenergetic significance. Mol Gen Genet 262:876–883

    PubMed  CAS  Google Scholar 

  • Walker JE (1992) The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains. Q Rev Biophys 25:253–324

    Article  PubMed  CAS  Google Scholar 

  • Wierenga RK, de Maeyer MCH, Hol WGJ (1985) Interaction of pyrophosphate moieties with α-helixes in dinucleotide binding proteins. Biochem 24:1346–1357

    CAS  Google Scholar 

  • Wikström MKF (1984) Pumping of protons from the mitochondrial matrix by cytochrome oxidase. Nature 308:558–560

    PubMed  Google Scholar 

  • Wissing S, Ludovico P, Herker E, Büttner S, Engelhardt S, Decker T, Link A, Proksch A, Rodrigues F, Corte-Real M, Fröhlich K-U, Manns J, Cande C, Sigrist SJ, Kroemer G, Madeo F (2004) An AIF orthologue regulates apoptosis in yeast. J Cell Biol 166:969–974

    PubMed  CAS  Google Scholar 

  • Yagi T, Seo BB, Nakamaru-Ogiso E, Marella M, Barber-Singh J, Yamashita T, Matsuno-Yagi A (2006) Possibility of transkingdom gene therapy for complex I diseases. Biochim Biophys Acta 1757:708–714

    PubMed  CAS  Google Scholar 

  • Yamaguchi M, Belogrudov G, Hatefi Y (1998) Mitochondrial NADH-ubiquinone oxidoreductase (complex I). Effect of substrates on the fragmentation of subunits by trypsin. J Biol Chem 273:8094–8098

    PubMed  CAS  Google Scholar 

  • Yoshikawa K, Nakayama Y, Hayashi M, Unemoto T, Mochida K (1999) Korormicin, an antibiotic specific for gram-negative marine bacteria, strongly inhibits the respiratory chain-linked Na+-translocating NADH:quinone reductase from the marine Vibrio alginolyticus. J Antibiotics 52:182–185

    CAS  Google Scholar 

  • Yoshikawa K, Takadera T, Adachi K, Nishijima M, Sano H (1997) Korormicin, a novel antibiotic specifically active against marine gram-negative bacteria, produced by a marine bacterium. J Antibiotics 50:949–953

    CAS  Google Scholar 

  • Zhou WD, Bertsova YV, Feng BT, Tsatsos P, Verkhovskaya ML, Gennis RB, Bogachev AV, Barquera B (1999) Sequencing and preliminary characterization of the Na+-translocating NADH:ubiquinone oxidoreductase from Vibrio harveyi. Biochem 38:16246–16252

    CAS  Google Scholar 

  • Zickermann V, Bostina M, Hunte C, Ruiz T, Radermacher M, Brandt U (2003) Functional implications from an unexpected position of the 49-kDa subunit of complex I. J Biol Chem 278:29072–29078

    PubMed  CAS  Google Scholar 

  • Zwicker K, Galkin A, Dröse S, Grgic L, Kerscher S, Brandt U (2006) The redox-Bohr group associated with iron–sulfur cluster N2 of complex I. J Biol Chem 218:23013–23017

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Brandt .

Editor information

Günter Schäfer Harvey S. Penefsky

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kerscher, S., Dröse, S., Zickermann, V., Brandt, U. (2007). The Three Families of Respiratory NADH Dehydrogenases. In: Schäfer, G., Penefsky, H.S. (eds) Bioenergetics. Results and Problems in Cell Differentiation, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/400_2007_028

Download citation

Publish with us

Policies and ethics