Advertisement

Extracellular Matrix and Synaptic Functions

  • Alexander DityatevEmail author
  • Renato Frischknecht
  • Constanze I. Seidenbecher
Chapter
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 43)

Abstract

Comprehensive analysis of neuromuscular junction formation and recent data on synaptogenesis and long-term potentiation in the central nervous system revealed a number of extracellular matrix (ECM) molecules regulating different aspects of synaptic differentiation and function. The emerging mechanisms comprise interactions of ECM components with their cell surface receptors coupled to tyrosine kinase activities (agrin, integrin ligands, and reelin) and interactions with ion channels and transmitter receptors (Narp, tenascin-R and tenascin-C). These interactions may shape synaptic transmission and plasticity of excitatory synapses either via regulation of Ca 2+ entry and postsynaptic expression of transmitter receptors or via control of GABAergic inhibition. The ECM molecules, derived from both neurons and glial cells and secreted into the extracellular space in an activity-dependent manner, may also shape synaptic plasticity through setting diffusion constraints for neurotransmitters, trophic factors and ions.

Keywords

Synaptic Plasticity AMPA Receptor Neural Cell Adhesion Molecule Synaptic Function Chondroitin Sulfate Proteoglycan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

AChR

acetylcholine receptor

AMPA

alpha-amino-3-hydroxy-5-methyl-4 isoxazolepropionic acid

ApoER2

apolipoprotein E receptor 2

CA1,3

hippocampal cornu ammonis regions 1,3

CaMKII

Ca2+/calmodulin-dependent protein kinase II

CNS

central nervous system

CREB

cAMP-responsive element-binding protein

CS

chondroitin sulfate

CSPG

chondroitin sulfate proteoglycan

ECM

extracellular matrix

EPSC

excitatory postsynaptic current

FN

fibronectin

GABA

gamma-aminobutyric acid

GIRK

G-protein-coupled inwardly rectifying K+ channel

GluR1

glutamate receptor subunit 1

HA

hyaluronic acid

HB-GAM

heparin-binding growth-associated molecule

HNK-1

human natural killer cell antigen 1

HSPG

heparan sulfate proteoglycan

IAP

integrin-associated protein

KO

knock out

LTP

long-term potentiation

MAPK

mitogen-activated protein kinase

MMP

matrix metalloprotease

MuSK

muscle-specific receptor tyrosine kinase

Narp/NP2

neuronal activity-regulated pentraxin

NMDA

N-methyl-D-aspartate

NMJ

neuromuscular junction

NP1

neuronal pentraxin 1

NR2B

NMDA receptor 2B

OPC

oligodendrocyte progenitor cells

PKC

protein kinase C

PSA-NCAM

polysialylated neural cell adhesion molecule

PSI

phosphacan short isoform

RAP

receptor-associated protein

RPTP

receptor protein tyrosine phosphatase

SAP90/PSD-95

synapse-associated protein 90 kDa/post-synaptic density protein of 95 kD

SV2

synaptic vesicle protein 2

TN-C

tenascin-C

TN-R

tenascin-R

TSP

thrombospondin

VDCC

voltage-dependent calcium channel

VLDL

very low density lipoprotein

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Work in our laboratories is supported by the Deutsche Forschungsgemeinschaft grants Di 702/4-1 and -2, and Gu 230/5-1 and by the Swiss National Fonds.

References

  1. 1.
    Adams JC (2001) Thrombospondins: multifunctional regulators of cell interactions. Annu Rev Cell Dev Biol 17:25–51 PubMedGoogle Scholar
  2. 2.
    Amet LE, Lauri SE, Hienola A, Croll SD, Lu Y, Levorse JM, Prabhakaran B, Taira T, Rauvala H, Vogt TF (2001) Enhanced hippocampal long-term potentiation in mice lacking heparin-binding growth-associated molecule. Mol Cell Neurosci 17:1014–1024 PubMedGoogle Scholar
  3. 3.
    Anderson JL, Head SI, Morley JW (2005) Synaptic plasticity in the dy2J mouse model of laminin alpha2-deficient congenital muscular dystrophy. Brain Res 1042:23–28 PubMedGoogle Scholar
  4. 4.
    Aspberg A, Miura R, Bourdoulous S, Shimonaka M, Heinegard D, Schachner M, Ruoslahti E, Yamaguchi Y (1997) The C-type lectin domains of lecticans, a family of aggregating chondroitin sulfate proteoglycans, bind tenascin-R by protein-protein interactions independent of carbohydrate moiety. Proc Natl Acad Sci USA 94:10116–10121 PubMedGoogle Scholar
  5. 5.
    Beffert U, Weeber EJ, Durudas A, Qiu S, Masiulis I, Sweatt JD, Li WP, Adelmann G, Frotscher M, Hammer RE, Herz J (2005) Modulation of synaptic plasticity and memory by Reelin involves differential splicing of the lipoprotein receptor Apoer2. Neuron 47:567–579 PubMedGoogle Scholar
  6. 6.
    Bergles DE, Roberts JD, Somogyi P, Jahr CE (2000) Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405:187–191 PubMedGoogle Scholar
  7. 7.
    Bernard-Trifilo JA, Kramar EA, Torp R, Lin CY, Pineda EA, Lynch G, Gall CM (2005) Integrin signaling cascades are operational in adult hippocampal synapses and modulate NMDA receptor physiology. J Neurochem 93:834–849 PubMedGoogle Scholar
  8. 8.
    Bi X, Lynch G, Zhou J, Gall CM (2001) Polarized distribution of alpha5 integrin in dendrites of hippocampal and cortical neurons. J Comp Neurol 435:184–193 PubMedGoogle Scholar
  9. 9.
    Bose CM, Qiu D, Bergamaschi A, Gravante B, Bossi M, Villa A, Rupp F, Malgaroli A (2000) Agrin controls synaptic differentiation in hippocampal neurons. J Neurosci 20:9086–9095 PubMedGoogle Scholar
  10. 10.
    Brakebusch C, Seidenbecher CI, Asztely F, Rauch U, Matthies H, Meyer H, Krug M, Bockers TM, Zhou X, Kreutz MR, Montag D, Gundelfinger ED, Fassler R (2002) Brevican-deficient mice display impaired hippocampal CA1 long-term potentiation but show no obvious deficits in learning and memory. Mol Cell Biol 22:7417–7427 PubMedGoogle Scholar
  11. 11.
    Bruckner G, Grosche J, Schmidt S, Hartig W, Margolis RU, Delpech B, Seidenbecher CI, Czaniera R, Schachner M (2000) Postnatal development of perineuronal nets in wild-type mice and in a mutant deficient in tenascin-R. J Comp Neurol 428:616–629 PubMedGoogle Scholar
  12. 12.
    Bukalo O, Schachner M, Dityatev A (2001) Modification of extracellular matrix by enzymatic removal of chondroitin sulfate and by lack of tenascin-R differentially affects several forms of synaptic plasticity in the hippocampus. Neuroscience 104:359–369 PubMedGoogle Scholar
  13. 13.
    Bukalo O NA, Schachner M, Dityatev A (2005) GABAergic inhibition and metaplasticity: insights from analysis of mice deficient in the extracellular matrix glycoprotein tenascin-R. Program No 5001, 2005 Abstract Viewer/Itinerary Planner Washington, DC: Society for Neuroscience, 2005 Online Google Scholar
  14. 14.
    Burgess RW, Nguyen QT, Son YJ, Lichtman JW, Sanes JR (1999) Alternatively spliced isoforms of nerve- and muscle-derived agrin: their roles at the neuromuscular junction. Neuron 23:33–44 PubMedGoogle Scholar
  15. 15.
    Butt AM, Kiff J, Hubbard P, Berry M (2002) Synantocytes: new functions for novel NG2 expressing glia. J Neurocytol 31:551–565 PubMedGoogle Scholar
  16. 16.
    Canoll PD, Petanceska S, Schlessinger J, Musacchio JM (1996) Three forms of RPTP-beta are differentially expressed during gliogenesis in the developing rat brain and during glial cell differentiation in culture. J Neurosci Res 44:199–215 PubMedGoogle Scholar
  17. 17.
    Chan CS, Weeber EJ, Kurup S, Sweatt JD, Davis RL (2003) Integrin requirement for hippocampal synaptic plasticity and spatial memory. J Neurosci 23:7107–7116 PubMedGoogle Scholar
  18. 18.
    Chang HP, Lindberg FP, Wang HL, Huang AM, Lee EH (1999) Impaired memory retention and decreased long-term potentiation in integrin-associated protein-deficient mice. Learn Mem 6:448–457 PubMedGoogle Scholar
  19. 19.
    Chavis P, Westbrook G (2001) Integrins mediate functional pre- and postsynaptic maturation at a hippocampal synapse. Nature 411:317–321 PubMedGoogle Scholar
  20. 20.
    Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A, Lawler J, Mosher DF, Bornstein P, Barres BA (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120:421–433 PubMedGoogle Scholar
  21. 21.
    Chun D, Gall CM, Bi X, Lynch G (2001) Evidence that integrins contribute to multiple stages in the consolidation of long term potentiation in rat hippocampus. Neuroscience 105:815–829 PubMedGoogle Scholar
  22. 22.
    Cybulska-Klosowicz A, Zakrzewska R, Pyza E, Kossut M, Schachner M (2004) Reduced plasticity of cortical whisker representation in adult tenascin-C-deficient mice after vibrissectomy. Eur J Neurosci 20:1538–1544 PubMedGoogle Scholar
  23. 23.
    Davis MJ, Wu X, Nurkiewicz TR, Kawasaki J, Gui P, Hill MA, Wilson E (2001) Regulation of ion channels by protein tyrosine phosphorylation. Am J Physiol Heart Circ Physiol 281:H1835–1862 PubMedGoogle Scholar
  24. 24.
    DeChiara TM, Bowen DC, Valenzuela DM, Simmons MV, Poueymirou WT, Thomas S, Kinetz E, Compton DL, Rojas E, Park JS, Smith C, DiStefano PS, Glass DJ, Burden SJ, Yancopoulos GD (1996) The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 85:501–512 PubMedGoogle Scholar
  25. 25.
    Diers-Fenger M, Kirchhoff F, Kettenmann H, Levine JM, Trotter J (2001) AN2/NG2 protein-expressing glial progenitor cells in the murine CNS: isolation, differentiation, and association with radial glia. Glia 34:213–228 PubMedGoogle Scholar
  26. 26.
    Dityatev A, Schachner M (2003) Extracellular matrix molecules and synaptic plasticity. Nat Rev Neurosci 4:456–468 PubMedGoogle Scholar
  27. 27.
    Dityatev A, Dityateva G, Sytnyk V, Delling M, Toni N, Nikonenko I, Muller D, Schachner M (2004) Polysialylated neural cell adhesion molecule promotes remodeling and formation of hippocampal synapses. J Neurosci 24:9372–9382 PubMedGoogle Scholar
  28. 28.
    Einheber S, Schnapp LM, Salzer JL, Cappiello ZB, Milner TA (1996) Regional and ultrastructural distribution of the alpha 8 integrin subunit in developing and adult rat brain suggests a role in synaptic function. J Comp Neurol 370:105–134 PubMedGoogle Scholar
  29. 29.
    Evers MR, Salmen B, Bukalo O, Rollenhagen A, Bosl MR, Morellini F, Bartsch U, Dityatev A, Schachner M (2002) Impairment of L-type Ca2+channel-dependent forms of hippocampal synaptic plasticity in mice deficient in the extracellular matrix glycoprotein tenascin-C. J Neurosci 22:7177–7194 PubMedGoogle Scholar
  30. 30.
    Ferreira A (1999) Abnormal synapse formation in agrin-depleted hippocampal neurons. J Cell Sci 112(Pt 24):4729–4738 PubMedGoogle Scholar
  31. 31.
    Gall CM, Pinkstaff JK, Lauterborn JC, Xie Y, Lynch G (2003) Integrins regulate neuronal neurotrophin gene expression through effects on voltage-sensitive calcium channels. Neuroscience 118:925–940 PubMedGoogle Scholar
  32. 32.
    Gingras J, Rassadi S, Cooper E, Ferns M (2002) Agrin plays an organizing role in the formation of sympathetic synapses. J Cell Biol 158:1109–1118 PubMedGoogle Scholar
  33. 33.
    Goldberg GI, Frisch SM, He C, Wilhelm SM, Reich R, Collier IE (1990) Secreted proteases. Regulation of their activity and their possible role in metastasis. Ann NY Acad Sci 580:375–384 PubMedGoogle Scholar
  34. 34.
    Greenwood K, Butt AM (2003) Evidence that perinatal and adult NG2-glia are not conventional oligodendrocyte progenitors and do not depend on axons for their survival. Mol Cell Neurosci 23:544–558 PubMedGoogle Scholar
  35. 35.
    Grotewiel MS, Beck CD, Wu KH, Zhu XR, Davis RL (1998) Integrin-mediated short-term memory in Drosophila. Nature 391:455–460 PubMedGoogle Scholar
  36. 36.
    Gurevicius K, Gureviciene I, Valjakka A, Schachner M, Tanila H (2004) Enhanced cortical and hippocampal neuronal excitability in mice deficient in the extracellular matrix glycoprotein tenascin-R. Mol Cell Neurosci 25:515–523 PubMedGoogle Scholar
  37. 37.
    Hagihara K, Miura R, Kosaki R, Berglund E, Ranscht B, Yamaguchi Y (1999) Immunohistochemical evidence for the brevican-tenascin-R interaction: colocalization in perineuronal nets suggests a physiological role for the interaction in the adult rat brain. J Comp Neurol 410:256–264 PubMedGoogle Scholar
  38. 38.
    Hall RA, Vodyanoy V, Quan A, Sinnarajah S, Suppiramaniam V, Kessler M, Bahr BA (1996) Effects of heparin on the properties of solubilized and reconstituted rat brain AMPA receptors. Neurosci Lett 217:179–183 PubMedGoogle Scholar
  39. 39.
    Hama H, Hara C, Yamaguchi K, Miyawaki A (2004) PKC signaling mediates global enhancement of excitatory synaptogenesis in neurons triggered by local contact with astrocytes. Neuron 41:405–415 PubMedGoogle Scholar
  40. 40.
    Heck N, Klausmeyer A, Faissner A, Garwood J (2005) Cortical neurons express PSI, a novel isoform of phosphacan/RPTPbeta. Cell Tissue Res 321:323–333 PubMedGoogle Scholar
  41. 41.
    Hilgenberg LG, Smith MA (2004) Agrin signaling in cortical neurons is mediated by a tyrosine kinase-dependent increase in intracellular Ca2+that engages both CaMKII and MAPK signal pathways. J Neurobiol 61:289–300 PubMedGoogle Scholar
  42. 42.
    Hilgenberg LG, Hoover CL, Smith MA (1999) Evidence of an agrin receptor in cortical neurons. J Neurosci 19:7384–7393 PubMedGoogle Scholar
  43. 43.
    Hilgenberg LG, Ho KD, Lee D, O'Dowd DK, Smith MA (2002) Agrin regulates neuronal responses to excitatory neurotransmitters in vitro and in vivo. Mol Cell Neurosci 19:97–110 PubMedGoogle Scholar
  44. 44.
    Indyk JA, Chen ZL, Tsirka SE, Strickland S (2003) Laminin chain expression suggests that laminin-10 is a major isoform in the mouse hippocampus and is degraded by the tissue plasminogen activator/plasmin protease cascade during excitotoxic injury. Neuroscience 116:359–371 PubMedGoogle Scholar
  45. 45.
    Irintchev A, Rollenhagen A, Troncoso E, Kiss JZ, Schachner M (2005) Structural and functional aberrations in the cerebral cortex of tenascin-C deficient mice. Cereb Cortex 15:950–962 PubMedGoogle Scholar
  46. 46.
    Ishida A, Shimazaki K, Terashima T, Kawai N (1994) An electrophysiological and immunohistochemical study of the hippocampus of the reeler mutant mouse. Brain Res 662:60–68 PubMedGoogle Scholar
  47. 47.
    Jourquin J, Tremblay E, Bernard A, Charton G, Chaillan FA, Marchetti E, Roman FS, Soloway PD, Dive V, Yiotakis A, Khrestchatisky M, Rivera S (2005) Tissue inhibitor of metalloproteinases-1 (TIMP-1) modulates neuronal death, axonal plasticity, and learning and memory. Eur J Neurosci 22:2569–2578 PubMedCrossRefGoogle Scholar
  48. 48.
    Kaksonen M, Pavlov I, Voikar V, Lauri SE, Hienola A, Riekki R, Lakso M, Taira T, Rauvala H (2002) Syndecan-3-deficient mice exhibit enhanced LTP and impaired hippocampus-dependent memory. Mol Cell Neurosci 21:158–172 PubMedGoogle Scholar
  49. 49.
    Knight D, Tolley LK, Kim DK, Lavidis NA, Noakes PG (2003) Functional analysis of neurotransmission at beta2-laminin deficient terminals. J Physiol 546:789–800 PubMedGoogle Scholar
  50. 50.
    Kramar EA, Bernard JA, Gall CM, Lynch G (2002) Alpha3 integrin receptors contribute to the consolidation of long-term potentiation. Neuroscience 110:29–39 PubMedGoogle Scholar
  51. 51.
    Kramar EA, Bernard JA, Gall CM, Lynch G (2003) Integrins modulate fast excitatory transmission at hippocampal synapses. J Biol Chem 278:10722–10730 PubMedGoogle Scholar
  52. 52.
    Kuno K, Okada Y, Kawashima H, Nakamura H, Miyasaka M, Ohno H, Matsushima K (2000) ADAMTS-1 cleaves a cartilage proteoglycan, aggrecan. FEBS Lett 478:241–245 PubMedGoogle Scholar
  53. 53.
    Lander C, Kind P, Maleski M, Hockfield S (1997) A family of activity-dependent neuronal cell-surface chondroitin sulfate proteoglycans in cat visual cortex. J Neurosci 17:1928–1939 PubMedGoogle Scholar
  54. 54.
    Lauri SE, Taira T, Kaila K, Rauvala H (1996) Activity-induced enhancement of HB-GAM expression in rat hippocampal slices. Neuroreport 7:1670–1674 PubMedGoogle Scholar
  55. 55.
    Lauri SE, Rauvala H, Kaila K, Taira T (1998) Effect of heparin-binding growth-associated molecule (HB-GAM) on synaptic transmission and early LTP in rat hippocampal slices. Eur J Neurosci 10:188–194 PubMedGoogle Scholar
  56. 56.
    Lauri SE, Kaukinen S, Kinnunen T, Ylinen A, Imai S, Kaila K, Taira T, Rauvala H (1999) Regulatory role and molecular interactions of a cell-surface heparan sulfate proteoglycan (N-syndecan) in hippocampal long-term potentiation. J Neurosci 19:1226–1235 PubMedGoogle Scholar
  57. 57.
    Li Z, Hilgenberg LG, O'Dowd DK, Smith MA (1999) Formation of functional synaptic connections between cultured cortical neurons from agrin-deficient mice. J Neurobiol 39:547–557 PubMedGoogle Scholar
  58. 58.
    Libby RT, Lavallee CR, Balkema GW, Brunken WJ, Hunter DD (1999) Disruption of laminin beta2 chain production causes alterations in morphology and function in the CNS. J Neurosci 19:9399–9411 PubMedGoogle Scholar
  59. 59.
    Lin B, Arai AC, Lynch G, Gall CM (2003) Integrins regulate NMDA receptor-mediated synaptic currents. J Neurophysiol 89:2874–2878 PubMedGoogle Scholar
  60. 60.
    Lin SC, Bergles DE (2004a) Synaptic signaling between neurons and glia. Glia 47:290–298 PubMedGoogle Scholar
  61. 61.
    Lin SC, Bergles DE (2004b) Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus. Nat Neurosci 7:24–32 PubMedGoogle Scholar
  62. 62.
    Lin SC, Huck JH, Roberts JD, Macklin WB, Somogyi P, Bergles DE (2005) Climbing fiber innervation of NG2-expressing glia in the mammalian cerebellum. Neuron 46:773–785 PubMedGoogle Scholar
  63. 63.
    Liu WS, Pesold C, Rodriguez MA, Carboni G, Auta J, Lacor P, Larson J, Condie BG, Guidotti A, Costa E (2001) Down-regulation of dendritic spine and glutamic acid decarboxylase 67 expressions in the reelin haploinsufficient heterozygous reeler mouse. Proc Natl Acad Sci USA 98:3477–3482 PubMedGoogle Scholar
  64. 64.
    Margolis RK, Rauch U, Maurel P, Margolis RU (1996) Neurocan and phosphacan: two major nervous tissue-specific chondroitin sulfate proteoglycans. Perspect Dev Neurobiol 3:273–290 PubMedGoogle Scholar
  65. 65.
    Martin AO, Alonso G, Guerineau NC (2005) Agrin mediates a rapid switch from electrical coupling to chemical neurotransmission during synaptogenesis. J Cell Biol 169:503–514 PubMedGoogle Scholar
  66. 66.
    Matthews RT, Kelly GM, Zerillo CA, Gray G, Tiemeyer M, Hockfield S (2002) Aggrecan glycoforms contribute to the molecular heterogeneity of perineuronal nets. J Neurosci 22:7536–7547 PubMedGoogle Scholar
  67. 67.
    Mi R, Tang X, Sutter R, Xu D, Worley P, O'Brien RJ (2002) Differing mechanisms for glutamate receptor aggregation on dendritic spines and shafts in cultured hippocampal neurons. J Neurosci 22:7606–7616 PubMedGoogle Scholar
  68. 68.
    Mi R, Sia GM, Rosen K, Tang X, Moghekar A, Black JL, McEnery M, Huganir RL, O'Brien RJ (2004) AMPA receptor-dependent clustering of synaptic NMDA receptors is mediated by Stargazin and NR2A/B in spinal neurons and hippocampal interneurons. Neuron 44:335–349 PubMedGoogle Scholar
  69. 69.
    Miura R, Ethell IM, Yamaguchi Y (2001) Carbohydrate-protein interactions between HNK-1-reactive sulfoglucuronyl glycolipids and the proteoglycan lectin domain mediate neuronal cell adhesion and neurite outgrowth. J Neurochem 76:413–424 PubMedGoogle Scholar
  70. 70.
    Miura R, Aspberg A, Ethell IM, Hagihara K, Schnaar RL, Ruoslahti E, Yamaguchi Y (1999) The proteoglycan lectin domain binds sulfated cell surface glycolipids and promotes cell adhesion. J Biol Chem 274:11431–11438 PubMedGoogle Scholar
  71. 71.
    Miyata S, Akagi A, Hayashi N, Watanabe K, Oohira A (2004) Activity-dependent regulation of a chondroitin sulfate proteoglycan 6B4 phosphacan/RPTPbeta in the hypothalamic supraoptic nucleus. Brain Res 1017:163–171 PubMedGoogle Scholar
  72. 72.
    Murai KK, Misner D, Ranscht B (2002) Contactin supports synaptic plasticity associated with hippocampal long-term depression but not potentiation. Curr Biol 12:181–190 PubMedGoogle Scholar
  73. 73.
    Nakagami Y, Abe K, Nishiyama N, Matsuki N (2000) Laminin degradation by plasmin regulates long-term potentiation. J Neurosci 20:2003–2010 PubMedGoogle Scholar
  74. 74.
    Nakamura H, Fujii Y, Inoki I, Sugimoto K, Tanzawa K, Matsuki H, Miura R, Yamaguchi Y, Okada Y (2000) Brevican is degraded by matrix metalloproteinases and aggrecanase-1 (ADAMTS4) at different sites. J Biol Chem 275:38885–38890 PubMedGoogle Scholar
  75. 75.
    Nakic M, Manahan-Vaughan D, Reymann KG, Schachner M (1998) Long-term potentiation in vivo increases rat hippocampal tenascin-C expression. J Neurobiol 37:393–404 PubMedGoogle Scholar
  76. 76.
    Niisato K, Fujikawa A, Komai S, Shintani T, Watanabe E, Sakaguchi G, Katsuura G, Manabe T, Noda M (2005) Age-dependent enhancement of hippocampal long-term potentiation and impairment of spatial learning through the Rho-associated kinase pathway in protein tyrosine phosphatase receptor type Z-deficient mice. J Neurosci 25:1081–1088 PubMedGoogle Scholar
  77. 77.
    Nikonenko A, Schmidt S, Skibo G, Bruckner G, Schachner M (2003a) Tenascin-R-deficient mice show structural alterations of symmetric perisomatic synapses in the CA1 region of the hippocampus. J Comp Neurol 456:338–349 PubMedGoogle Scholar
  78. 78.
    Nikonenko I, Toni N, Moosmayer M, Shigeri Y, Muller D, Sargent Jones L (2003b) Integrins are involved in synaptogenesis, cell spreading, and adhesion in the postnatal brain. Brain Res Dev Brain Res 140:185–194 PubMedGoogle Scholar
  79. 79.
    Nishimune H, Sanes JR, Carlson SS (2004) A synaptic laminin-calcium channel interaction organizes active zones in motor nerve terminals. Nature 432:580–587 PubMedGoogle Scholar
  80. 80.
    Nishimura SL, Boylen KP, Einheber S, Milner TA, Ramos DM, Pytela R (1998) Synaptic and glial localization of the integrin alphavbeta8 in mouse and rat brain. Brain Res 791:271–282 PubMedGoogle Scholar
  81. 81.
    Nishiyama A, Stallcup WB (1993) Expression of NG2 proteoglycan causes retention of type VI collagen on the cell surface. Mol Biol Cell 4:1097–1108 PubMedGoogle Scholar
  82. 82.
    Nishiyama A, Dahlin KJ, Prince JT, Johnstone SR, Stallcup WB (1991) The primary structure of NG2, a novel membrane-spanning proteoglycan. J Cell Biol 114:359–371 PubMedGoogle Scholar
  83. 83.
    O'Brien R, Xu D, Mi R, Tang X, Hopf C, Worley P (2002) Synaptically targeted narp plays an essential role in the aggregation of AMPA receptors at excitatory synapses in cultured spinal neurons. J Neurosci 22:4487–4498 PubMedGoogle Scholar
  84. 84.
    O'Brien RJ, Xu D, Petralia RS, Steward O, Huganir RL, Worley P (1999) Synaptic clustering of AMPA receptors by the extracellular immediate-early gene product Narp. Neuron 23:309–323 PubMedGoogle Scholar
  85. 85.
    Patton BL, Cunningham JM, Thyboll J, Kortesmaa J, Westerblad H, Edstrom L, Tryggvason K, Sanes JR (2001) Properly formed but improperly localized synaptic specializations in the absence of laminin alpha4. Nat Neurosci 4:597–604 PubMedGoogle Scholar
  86. 86.
    Pavlov I, Voikar V, Kaksonen M, Lauri SE, Hienola A, Taira T, Rauvala H (2002) Role of heparin-binding growth-associated molecule (HB-GAM) in hippocampal LTP and spatial learning revealed by studies on overexpressing and knockout mice. Mol Cell Neurosci 20:330–342 PubMedGoogle Scholar
  87. 87.
    Phillips WD, Maimone MM, Merlie JP (1991) Mutagenesis of the 43-kD postsynaptic protein defines domains involved in plasma membrane targeting and AChR clustering. J Cell Biol 115:1713–1723 PubMedGoogle Scholar
  88. 88.
    Pinkstaff JK, Detterich J, Lynch G, Gall C (1999) Integrin subunit gene expression is regionally differentiated in adult brain. J Neurosci 19:1541–1556 PubMedGoogle Scholar
  89. 89.
    Rauvala H, Peng HB (1997) HB-GAM (heparin-binding growth-associated molecule) and heparin-type glycans in the development and plasticity of neuron-target contacts. Prog Neurobiol 52:127–144 PubMedGoogle Scholar
  90. 90.
    Ronn LC, Pedersen N, Jahnsen H, Berezin V, Bock E (1997) Brain plasticity and the neural cell adhesion molecule (NCAM). Adv Exp Med Biol 429:305–322 PubMedGoogle Scholar
  91. 91.
    Saghatelyan AK, Gorissen S, Albert M, Hertlein B, Schachner M, Dityatev A (2000) The extracellular matrix molecule tenascin-R and its HNK-1 carbohydrate modulate perisomatic inhibition and long-term potentiation in the CA1 region of the hippocampus. Eur J Neurosci 12:3331–3342 PubMedGoogle Scholar
  92. 92.
    Saghatelyan AK, Dityatev A, Schmidt S, Schuster T, Bartsch U, Schachner M (2001) Reduced perisomatic inhibition, increased excitatory transmission, and impaired long-term potentiation in mice deficient for the extracellular matrix glycoprotein tenascin-R. Mol Cell Neurosci 17:226–240 PubMedGoogle Scholar
  93. 93.
    Saghatelyan AK, Snapyan M, Gorissen S, Meigel I, Mosbacher J, Kaupmann K, Bettler B, Kornilov AV, Nifantiev NE, Sakanyan V, Schachner M, Dityatev A (2003) Recognition molecule associated carbohydrate inhibits postsynaptic GABA(B) receptors: a mechanism for homeostatic regulation of GABA release in perisomatic synapses. Mol Cell Neurosci 24:271–282 PubMedGoogle Scholar
  94. 94.
    Sanes JR, Lichtman JW (2001) Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat Rev Neurosci 2:791–805 PubMedGoogle Scholar
  95. 95.
    Schneider S, Bosse F, D'Urso D, Muller H, Sereda MW, Nave K, Niehaus A, Kempf T, Schnolzer M, Trotter J (2001) The AN2 protein is a novel marker for the Schwann cell lineage expressed by immature and nonmyelinating Schwann cells. J Neurosci 21:920–933 PubMedGoogle Scholar
  96. 96.
    Schuster T, Krug M, Stalder M, Hackel N, Gerardy-Schahn R, Schachner M (2001) Immunoelectron microscopic localization of the neural recognition molecules L1, NCAM, and its isoform NCAM180, the NCAM-associated polysialic acid, beta1 integrin and the extracellular matrix molecule tenascin-R in synapses of the adult rat hippocampus. J Neurobiol 49:142–158 PubMedGoogle Scholar
  97. 97.
    Seidenbecher C, Richter K, Gundelfinger ED (1997) Brevican, a conditional proteoglycan from rat brain: characterization of secreted and GPI-anchored isoforms. In: Teelken AW, Korf J (eds) Neurochemistry. Plenum Press, New York, pp 901–904 Google Scholar
  98. 98.
    Seidenbecher CI, Smalla KH, Fischer N, Gundelfinger ED, Kreutz MR (2002) Brevican isoforms associate with neural membranes. J Neurochem 83:738–746 PubMedGoogle Scholar
  99. 99.
    Senn C, Kutsche M, Saghatelyan A, Bosl MR, Lohler J, Bartsch U, Morellini F, Schachner M (2002) Mice deficient for the HNK-1 sulfotransferase show alterations in synaptic efficacy and spatial learning and memory. Mol Cell Neurosci 20:712–729 PubMedGoogle Scholar
  100. 100.
    Serpinskaya AS, Feng G, Sanes JR, Craig AM (1999) Synapse formation by hippocampal neurons from agrin-deficient mice. Dev Biol 205:65–78 PubMedGoogle Scholar
  101. 101.
    Sinagra M, Verrier D, Frankova D, Korwek KM, Blahos J, Weeber EJ, Manzoni OJ, Chavis P (2005) Reelin, very-low-density lipoprotein receptor, and apolipoprotein E receptor 2 control somatic NMDA receptor composition during hippocampal maturation in vitro. J Neurosci 25:6127–6136 PubMedGoogle Scholar
  102. 102.
    Sinnarajah S, Suppiramaniam V, Kumar KP, Hall RA, Bahr BA, Vodyanoy V (1999) Heparin modulates the single channel kinetics of reconstituted AMPA receptors from rat brain. Synapse 31:203–209 PubMedGoogle Scholar
  103. 103.
    Slezak M, Pfrieger FW (2003) New roles for astrocytes: regulation of CNS synaptogenesis. Trends Neurosci 26:531–535 PubMedGoogle Scholar
  104. 104.
    Son YJ, Scranton TW, Sunderland WJ, Baek SJ, Miner JH, Sanes JR, Carlson SS (2000) The synaptic vesicle protein SV2 is complexed with an alpha5-containing laminin on the nerve terminal surface. J Biol Chem 275:451–460 PubMedGoogle Scholar
  105. 105.
    Staubli U, Vanderklish P, Lynch G (1990) An inhibitor of integrin receptors blocks long-term potentiation. Behav Neural Biol 53:1–5 PubMedGoogle Scholar
  106. 106.
    Staubli U, Chun D, Lynch G (1998) Time-dependent reversal of long-term potentiation by an integrin antagonist. J Neurosci 18:3460–3469 PubMedGoogle Scholar
  107. 107.
    Stegmuller J, Werner H, Nave KA, Trotter J (2003) The proteoglycan NG2 is complexed with alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by the PDZ glutamate receptor interaction protein (GRIP) in glial progenitor cells. Implications for glial-neuronal signaling. J Biol Chem 278:3590–3598 PubMedGoogle Scholar
  108. 108.
    Strekalova T, Sun M, Sibbe M, Evers M, Dityatev A, Gass P, Schachner M (2002) Fibronectin domains of extracellular matrix molecule tenascin-C modulate hippocampal learning and synaptic plasticity. Mol Cell Neurosci 21:173–187 PubMedGoogle Scholar
  109. 109.
    Sykova E, Vorisek I, Mazel T, Antonova T, Schachner M (2005) Reduced extracellular space in the brain of tenascin-R- and HNK-1-sulphotransferase deficient mice. Eur J Neurosci 22:1873–1880 PubMedGoogle Scholar
  110. 110.
    VanSaun M, Werle MJ (2000) Matrix metalloproteinase-3 removes agrin from synaptic basal lamina. J Neurobiol 43:140–149 PubMedGoogle Scholar
  111. 111.
    VanSaun M, Herrera AA, Werle MJ (2003) Structural alterations at the neuromuscular junctions of matrix metalloproteinase 3 null mutant mice. J Neurocytol 32:1129–1142 PubMedGoogle Scholar
  112. 112.
    Weber P, Bartsch U, Rasband MN, Czaniera R, Lang Y, Bluethmann H, Margolis RU, Levinson SR, Shrager P, Montag D, Schachner M (1999) Mice deficient for tenascin-R display alterations of the extracellular matrix and decreased axonal conduction velocities in the CNS. J Neurosci 19:4245–4262 PubMedGoogle Scholar
  113. 113.
    Weeber EJ, Beffert U, Jones C, Christian JM, Forster E, Sweatt JD, Herz J (2002) Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J Biol Chem 277:39944–39952 PubMedGoogle Scholar
  114. 114.
    Welzl H, Stork O (2003) Cell adhesion molecules: key players in memory consolidation? News Physiol Sci 18:147–150 PubMedGoogle Scholar
  115. 115.
    Werle MJ, VanSaun M (2003) Activity dependent removal of agrin from synaptic basal lamina by matrix metalloproteinase 3. J Neurocytol 32:905–913 PubMedGoogle Scholar
  116. 116.
    Xu D, Hopf C, Reddy R, Cho RW, Guo L, Lanahan A, Petralia RS, Wenthold RJ, O'Brien RJ, Worley P (2003) Narp and NP1 form heterocomplexes that function in developmental and activity-dependent synaptic plasticity. Neuron 39:513–528 PubMedGoogle Scholar
  117. 117.
    Yamagata M, Sanes JR (2005) Versican in the developing brain: lamina-specific expression in interneuronal subsets and role in presynaptic maturation. J Neurosci 25:8457–8467 PubMedGoogle Scholar
  118. 118.
    Yamaguchi Y (2000) Lecticans: organizers of the brain extracellular matrix. Cell Mol Life Sci 57:276–289 PubMedGoogle Scholar
  119. 119.
    Yamamoto S, Oka S, Inoue M, Shimuta M, Manabe T, Takahashi H, Miyamoto M, Asano M, Sakagami J, Sudo K, Iwakura Y, Ono K, Kawasaki T (2002) Mice deficient in nervous system-specific carbohydrate epitope HNK-1 exhibit impaired synaptic plasticity and spatial learning. J Biol Chem 277:27227–27231 PubMedGoogle Scholar
  120. 120.
    Zaremba S, Guimaraes A, Kalb RG, Hockfield S (1989) Characterization of an activity-dependent, neuronal surface proteoglycan identified with monoclonal antibody Cat-301. Neuron 2:1207–1219 PubMedGoogle Scholar
  121. 121.
    Zhou XH, Brakebusch C, Matthies H, Oohashi T, Hirsch E, Moser M, Krug M, Seidenbecher CI, Boeckers TM, Rauch U, Buettner R, Gundelfinger ED, Fassler R (2001) Neurocan is dispensable for brain development. Mol Cell Biol 21:5970–5978 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Alexander Dityatev
    • 1
    Email author
  • Renato Frischknecht
    • 2
  • Constanze I. Seidenbecher
    • 2
  1. 1.Institut für Neurophysiologie und PathophysiologieUniversitätsklinikum Hamburg-EppendorfHamburgGermany
  2. 2.Leibniz-Institut für NeurobiologieMagdeburgGermany

Personalised recommendations