Skip to main content

Structure and Function of Protein Modules in Chromatin Biology

  • Chapter
  • First Online:
Chromatin Dynamics in Cellular Function

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 41))

Abstract

Chromatin-mediated gene transcription or silencing is a dynamic process in which binding of various proteins or protein complexes can displace nucleosomal histones from DNA to relieve repression or drive the gene into a highly repressed, silent state. Covalent modifications to DNA and histones associated with chromatin structural change play a crucial role in transcriptional regulation, with particular modifications on certain residues associated with a specific transcriptional outcome. In recent years a number of structural domains have been identified within chromatin-associated proteins, including DNA or RNA binding domains, protein-protein interaction domains and domains that recognize specific covalent modifications to histone tails. In this review we discuss the structural features of these protein modules and the functional roles they play in chromatin biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aapola U, Liiv I, Peterson P (2002) Imprinting regulator DNMT3L is a transcriptional repressor associated with histone deacetylase activity. Nucleic Acids Res 30(16):3602–3608

    Article  CAS  PubMed  Google Scholar 

  2. Aasland R, Gibson TJ, Stewart AF (1995) The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem Sci 20(2):56–59

    Article  CAS  PubMed  Google Scholar 

  3. Aasland R, Stewart AF (1995) The chromo shadow domain, a second chromo domain in heterochromatin-binding protein 1, HP1. Nucleic Acids Res 23(16):3168–3173

    CAS  PubMed  Google Scholar 

  4. Akhtar A, Zink D, Becker PB (2000) Chromodomains are protein-RNA interaction modules. Nature 407(6802):405–409

    Article  CAS  PubMed  Google Scholar 

  5. Aravind L, Iyer LM (2002) The SWIRM domain: a conserved module found in chromosomal proteins points to novel chromatin-modifying activities. Genome Biol 3(8):RESEARCH0039

    Article  CAS  PubMed  Google Scholar 

  6. Aravind L, Koonin EV (1998) The HORMA domain: a common structural denominator in mitotic checkpoints, chromosome synapsis and DNA repair. Trends Biochem Sci 23(8):284–286

    Article  CAS  PubMed  Google Scholar 

  7. Arnan C et al. (2003) Interaction of nucleoplasmin with core histones. J Biol Chem 278(33):31319–31324

    Article  CAS  PubMed  Google Scholar 

  8. Ball LJ et al. (1997) Structure of the chromatin binding (chromo) domain from mouse modifier protein 1. Embo J 16(9):2473–2481

    CAS  Google Scholar 

  9. Banerjee-Basu S et al. (1999) The Homeodomain Resource: sequences, structures and genomic information. Nucleic Acids Res 27(1):336–337

    Article  CAS  PubMed  Google Scholar 

  10. Bannister AJ et al. (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410(6824):120–124

    Article  CAS  PubMed  Google Scholar 

  11. Bennett-Lovsey R et al. (2002) The SWIB and the MDM2 domains are homologous and share a common fold. Bioinformatics 18(4):626–630

    Article  CAS  PubMed  Google Scholar 

  12. Bordoli L et al. (2001) Functional analysis of the p300 acetyltransferase domain: the PHD finger of p300 but not of CBP is dispensable for enzymatic activity. Nucleic Acids Res 29(21):4462–4471

    Article  CAS  PubMed  Google Scholar 

  13. Bottomley MJ et al. (2001) The SAND domain structure defines a novel DNA-binding fold in transcriptional regulation. Nat Struct Biol 8(7):626–633

    Article  CAS  PubMed  Google Scholar 

  14. Bottomley MJ (2004) Structures of protein domains that create or recognize histone modifications. EMBORep 5(5):464–469

    CAS  Google Scholar 

  15. Boyer LA et al. (2002) Essential role for the SANT domain in the functioning of multiple chromatin remodeling enzymes. Mol Cell 10(4):935–942

    Article  CAS  PubMed  Google Scholar 

  16. Boyer LA, Latek RR, Peterson CL (2004) The SANT domain: a unique histone-tail-binding module? Nat Rev Mol Cell Biol 5(2):158–163

    Article  CAS  PubMed  Google Scholar 

  17. Brahms H et al. (2001) Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B′and the Sm-like protein LSm4, and their interaction with the SMN protein. RNA 7(11):1531–1542

    Article  CAS  PubMed  Google Scholar 

  18. Brasher SV et al. (2000) The structure of mouse HP1 suggests a unique mode of single peptide recognition by the shadow chromo domain dimer. Embo J 19(7):1587–1597

    Article  CAS  PubMed  Google Scholar 

  19. Callebaut I, Courvalin JC, Mornon JP (1999) The BAH (bromo-adjacent homology) domain: a link between DNA methylation, replication and transcriptional regulation. FEBS Lett 446(1):189–193

    Article  CAS  PubMed  Google Scholar 

  20. Cao R et al. (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298(5595):1039–1043

    Article  CAS  PubMed  Google Scholar 

  21. Capili AD et al. (2001) Solution structure of the PHD domain from the KAP-1 corepressor: structural determinants for PHD, RING and LIM zinc-binding domains. Embo J 20(1–2):165–177

    Article  CAS  PubMed  Google Scholar 

  22. Chavali GB et al. (2005) Crystal structure of the ENT domain of human EMSY. J Mol Biol 350(5):964–973

    Article  CAS  PubMed  Google Scholar 

  23. Col E et al. (2001) The histone acetyltransferase, hGCN5, interacts with and acetylates the HIV transactivator, Tat. J Biol Chem 276(30):28179–28184

    Article  CAS  PubMed  Google Scholar 

  24. Cote J, Richard S (2005) Tudor domains bind symmetrical dimethylated arginines. J Biol Chem 280(31):28476–28483

    Article  CAS  PubMed  Google Scholar 

  25. Dhalluin C et al. (1999) Structure and ligand of a histone acetyltransferase bromodomain. Nature 399(6735):491–496

    CAS  Google Scholar 

  26. Dorr A et al. (2002) Transcriptional synergy between Tat and PCAF is dependent on the binding of acetylated Tat to the PCAF bromodomain. Embo J 21(11):2715–2723

    Article  CAS  PubMed  Google Scholar 

  27. Dutta S et al. (2001) The crystal structure of nucleoplasmin-core: implications for histone binding and nucleosome assembly. Mol Cell 8(4):841–853

    Article  CAS  PubMed  Google Scholar 

  28. Eberharter A et al. (2001) Acf1, the largest subunit of CHRAC, regulates ISWI-induced nucleosome remodelling. Embo J 20(14):3781–3788

    Article  CAS  PubMed  Google Scholar 

  29. Eberharter A et al. (2004) ACF1 improves the effectiveness of nucleosome mobilization by ISWI through PHD-histone contacts. Embo J 23(20):4029–4039

    Article  CAS  PubMed  Google Scholar 

  30. Ekblad CM et al. (2005) Binding of EMSY to HP1beta: implications for recruitment of HP1beta and BS69. EMBO Rep 6(7):675–680

    Article  CAS  PubMed  Google Scholar 

  31. Ekman D et al. (2005) Multi-domain proteins in the three kingdoms of life: orphan domains and other unassigned regions. J Mol Biol 348(1):231–243

    Article  CAS  PubMed  Google Scholar 

  32. Friesen WJ et al. (2001) SMN, the product of the spinal muscular atrophy gene, binds preferentially to dimethylarginine-containing protein targets. Mol Cell 7(5):1111–1117

    Article  CAS  PubMed  Google Scholar 

  33. Ge YZ et al. (2004) Chromatin targeting of de novo DNA methyltransferases by the PWWP domain. J Biol Chem 279(24):25447–25454

    Article  CAS  PubMed  Google Scholar 

  34. Gibson TJ et al. (1998) The APECED polyglandular autoimmune syndrome protein, AIRE-1, contains the SAND domain and is probably a transcription factor. Trends Biochem Sci 23(7):242–244

    Article  CAS  PubMed  Google Scholar 

  35. Goodwin GH, Nicolas RH (2001) The BAH domain, polybromo and the RSC chromatin remodelling complex. Gene 268(1–2):1–7

    Article  CAS  PubMed  Google Scholar 

  36. Gozani O et al. (2003) The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell 114(1):99–111

    Article  CAS  PubMed  Google Scholar 

  37. Green JB et al. (2003) RNA recognition via the SAM domain of Smaug. Mol Cell 11(6):1537–1548

    Article  CAS  PubMed  Google Scholar 

  38. Grune T et al. (2003) Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI. Mol Cell 12(2):449–460

    Article  PubMed  Google Scholar 

  39. Halbach T, Scheer N, Werr W (2000) Transcriptional activation by the PHD finger is inhibited through an adjacent leucine zipper that binds 14-3-3 proteins. Nucleic Acids Res 28(18):3542–3550

    Article  CAS  PubMed  Google Scholar 

  40. Haynes SR et al. (1992) The bromodomain: a conserved sequence found in human, Drosophila and yeast proteins. Nucleic Acids Res 20(10):2603

    CAS  PubMed  Google Scholar 

  41. Hennig L, Bouveret R, Gruissem W (2005) MSI1-like proteins: an escort service for chromatin assembly and remodeling complexes. Trends Cell Biol 15(6):295–302

    Article  CAS  PubMed  Google Scholar 

  42. Hou Z et al. (2005) Structural basis of the Sir1-origin recognition complex interaction in transcriptional silencing. Proc Natl Acad Sci USA 102(24):8489–8494

    Article  CAS  PubMed  Google Scholar 

  43. Hsu HC, Stillman B, Xu RM (2005) Structural basis for origin recognition complex 1 protein-silence information regulator 1 protein interaction in epigenetic silencing. Proc Natl Acad Sci USA 102(24):8519–8524

    Article  CAS  PubMed  Google Scholar 

  44. Hudson BP et al. (2000) Solution structure and acetyl-lysine binding activity of the GCN5 bromodomain. J Mol Biol 304:355–370

    Article  CAS  PubMed  Google Scholar 

  45. Huyen Y et al. (2004) Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432(7015):406–411

    Article  CAS  PubMed  Google Scholar 

  46. Ito T et al. (1996) ATP-facilitated chromatin assembly with a nucleoplasmin-like protein from Drosophila melanogaster. J Biol Chem 271(40):25041–25048

    Article  CAS  PubMed  Google Scholar 

  47. Ito T et al. (1999) ACF consists of two subunits, Acf1 and ISWI, that function cooperatively in the ATP-dependent catalysis of chromatin assembly. Genes Dev 13(12):1529–1539

    CAS  PubMed  Google Scholar 

  48. Iwahara J et al. (2002) The structure of the Dead ringer-DNA complex reveals how AT-rich interaction domains (ARIDs) recognize DNA. Embo J 21(5):1197–1209

    Article  CAS  PubMed  Google Scholar 

  49. Jacobs SA, Khorasanizadeh S (2002) Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science 295(5562):2080–2083

    CAS  Google Scholar 

  50. Jacobson RH et al. (2000) Structure and function of a human TAFII250 double bromodomain module. Science 288:1422–1425

    CAS  Google Scholar 

  51. Jeanmougin F et al. (1997) The bromodomain revisited. Trends Biochem Sci 22(5):151–153

    Article  CAS  PubMed  Google Scholar 

  52. Kalkhoven E et al. (2002) The PHD type zinc finger is an integral part of the CBP acetyltransferase domain. Mol Cell Biol 22(7):1961–1970

    Article  CAS  PubMed  Google Scholar 

  53. Kalkhoven E et al. (2003) Loss of CBP acetyltransferase activity by PHD finger mutations in Rubinstein-Taybi syndrome. Hum Mol Genet 12(4):441–450

    Article  CAS  PubMed  Google Scholar 

  54. Kanno T et al. (2004) Selective recognition of acetylated histones by bromodomain proteins visualized in living cells. Mol Cell 13(1):33–43

    Article  CAS  PubMed  Google Scholar 

  55. Kasten M et al. (2004) Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14. Embo J 23(6):1348–1359

    Article  CAS  PubMed  Google Scholar 

  56. Kim CA et al. (2002) The SAM domain of polyhomeotic forms a helical polymer. Nat Struct Biol 9(6):453–457

    CAS  PubMed  Google Scholar 

  57. Kim CA et al. (2005) Structural organization of a Sex-comb-on-midleg/polyhomeotic copolymer. J Biol Chem 280(30):27769–27775

    Article  CAS  PubMed  Google Scholar 

  58. Kim S et al. (2004) Structure and DNA-binding sites of the SWI1 AT-rich interaction domain (ARID) suggest determinants for sequence-specific DNA recognition. J Biol Chem 279(16):16670–16676

    Article  CAS  PubMed  Google Scholar 

  59. Kodandapani R et al. (1996) A new pattern for helix-turn-helix recognition revealed by the PU.1 ETS-domain-DNA complex. Nature 380(6573):456–460

    Article  CAS  PubMed  Google Scholar 

  60. Kortschak RD, Tucker PW, Saint R (2000) ARID proteins come in from the desert. Trends Biochem Sci 25(6):294–299

    Article  CAS  PubMed  Google Scholar 

  61. Kwan AH et al. (2003) Engineering a protein scaffold from a PHD finger. Structure (Camb) 11(7):803–813

    Article  CAS  PubMed  Google Scholar 

  62. Lachner M et al. (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410(6824):116–120

    Article  CAS  PubMed  Google Scholar 

  63. Ladurner AG et al. (2003) Bromodomains mediate an acetyl-histone encoded antisilencing function at heterochromatin boundaries. Mol Cell 11(2):365–376

    Article  CAS  PubMed  Google Scholar 

  64. Lu Z et al. (2002) The PHD domain of MEKK1 acts as an E3 ubiquitin ligase and mediates ubiquitination and degradation of ERK1/2. Mol Cell 9(5):945–956

    Article  CAS  PubMed  Google Scholar 

  65. Martinez-Campa C et al. (2004) Precise nucleosome positioning and the TATA box dictate requirements for the histone H4 tail and the bromodomain factor Bdf1. Mol Cell 15(1):69–81

    Article  CAS  PubMed  Google Scholar 

  66. Matangkasombut O, Buratowski S (2003) Different sensitivities of bromodomain factors 1 and 2 to histone H4 acetylation. Mol Cell 11(2):353–363

    Article  CAS  PubMed  Google Scholar 

  67. Maurer-Stroh S et al. (2003) The Tudor domain Royal Family: Tudor, plant Agenet, Chromo, PWWP and MBT domains. Trends Biochem Sci 28(2):69–74

    Article  CAS  PubMed  Google Scholar 

  68. Min J, Zhang Y, Xu RM (2003) Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev 17(15):1823–1828

    Article  CAS  PubMed  Google Scholar 

  69. Mujtaba S et al. (2002) Structural basis of lysine-acetylated HIV-1 Tat recognition by PCAF bromodomain. Mol Cell 9(3):575–586

    Article  CAS  PubMed  Google Scholar 

  70. Mujtaba S et al. (2004) Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation. Mol Cell 13(2):251–263

    Article  CAS  PubMed  Google Scholar 

  71. Nakayama J et al. (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292(5514):110–113

    Article  CAS  PubMed  Google Scholar 

  72. Namboodiri VM et al. (2003) The crystal structure of Drosophila NLP-core provides insight into pentamer formation and histone binding. Structure (Camb) 11(2):175–186

    Article  CAS  PubMed  Google Scholar 

  73. Nameki N et al. (2005) Solution structure of the PWWP domain of the hepatoma-derived growth factor family. Protein Sci 14(3):756–764

    Article  CAS  PubMed  Google Scholar 

  74. Nielsen PR et al. (2002) Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature 416(6876):103–107

    CAS  Google Scholar 

  75. Nielsen PR et al. (2005) Structure of the chromo barrel domain from the MOF acetyltransferase. J Biol Chem 280(37):32326–32331

    Article  CAS  PubMed  Google Scholar 

  76. Noguchi E et al. (2003) Swi1 prevents replication fork collapse and controls checkpoint kinase Cds1. Mol Cell Biol 23(21):7861–7874

    Article  CAS  PubMed  Google Scholar 

  77. Oliver AW et al. (2005) Crystal structure of the proximal BAH domain of the polybromo protein. Biochem J 389(Pt 3):657–664

    Google Scholar 

  78. Ornaghi P et al. (1999) The bromodomain of Gcn5p interacts in vitro with specific residues in the N terminus of histone H4. J Mol Biol 287(1):1–7

    Article  CAS  PubMed  Google Scholar 

  79. Owen DJ et al. (2000) The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. Embo J 19(22):6141–6149

    Article  CAS  PubMed  Google Scholar 

  80. Pak DT et al. (1997) Association of the origin recognition complex with heterochromatin and HP1 in higher eukaryotes. Cell 91(3):311–323

    Article  CAS  PubMed  Google Scholar 

  81. Pascual J et al. (2000) Structure of the PHD zinc finger from human Williams-Beuren syndrome transcription factor. J Mol Biol 304(5):723–729

    Article  PubMed  CAS  Google Scholar 

  82. Patsialou A, Wilsker D, Moran E (2005) DNA-binding properties of ARID family proteins. Nucleic Acids Res 33(1):66–80

    Article  CAS  PubMed  Google Scholar 

  83. Polesskaya A et al. (2001) Interaction between acetylated MyoD and the bromodomain of CBP and/or p300. Mol Cell Biol 21(16):5312–5320

    Article  CAS  PubMed  Google Scholar 

  84. Poot RA et al. (2000) HuCHRAC, a human ISWI chromatin remodelling complex contains hACF1 and two novel histone-fold proteins. Embo J 19(13):3377–3387

    Article  CAS  PubMed  Google Scholar 

  85. Pray-Grant MG et al. (2005) Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature 433(7024):434–438

    Article  CAS  PubMed  Google Scholar 

  86. Qian C et al. (2005) Structure and chromosomal DNA binding of the SWIRM domain. Nat Struct Mol Biol 12(12):1078–1085

    Article  CAS  PubMed  Google Scholar 

  87. Qiao F, Bowie JU (2005) The many faces of SAM. Sci STKE 2005(286):re7

    Google Scholar 

  88. Qiu C et al. (2002) The PWWP domain of mammalian DNA methyltransferase Dnmt3b defines a new family of DNA-binding folds. Nat Struct Biol 9(3):217–224

    CAS  PubMed  Google Scholar 

  89. Ragvin A et al. (2004) Nucleosome binding by the bromodomain and PHD finger of the transcriptional cofactor p300. J Mol Biol 337(4):773–788

    Article  CAS  PubMed  Google Scholar 

  90. Ramakrishnan V et al. (1993) Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature 362(6417):219–223

    Article  CAS  PubMed  Google Scholar 

  91. Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70:81–120

    Article  CAS  PubMed  Google Scholar 

  92. Sathyamurthy A et al. (2003) Crystal structure of the malignant brain tumor (MBT) repeats in Sex Comb on Midleg-like 2 (SCML2). J Biol Chem 278(47):46968–46973

    Article  CAS  PubMed  Google Scholar 

  93. Selenko P et al. (2001) SMN tudor domain structure and its interaction with the Sm proteins. Nat Struct Biol 8(1):27–31

    Article  CAS  PubMed  Google Scholar 

  94. Shamay M et al. (2002) Hepatitis B virus pX interacts with HBXAP, a PHD finger protein to coactivate transcription. J Biol Chem 277(12):9982–9988

    Article  CAS  PubMed  Google Scholar 

  95. Shi Y et al. (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119(7):941–953

    Article  CAS  PubMed  Google Scholar 

  96. Simic R et al. (2003) Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes. Embo J 22(8):1846–1856

    Article  CAS  PubMed  Google Scholar 

  97. Slater LM, Allen MD, Bycroft M (2003) Structural variation in PWWP domains. J Mol Biol 330(3):571–576

    Article  CAS  PubMed  Google Scholar 

  98. Smith TF et al. (1999) The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 24(5):181–185

    Article  CAS  PubMed  Google Scholar 

  99. Stec I et al. (2000) The PWWP domain: a potential protein–protein interaction domain in nuclear proteins influencing differentiation? FEBS Lett 473(1):1–5

    Article  CAS  PubMed  Google Scholar 

  100. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45

    Article  CAS  PubMed  Google Scholar 

  101. Surdo PL et al. (2003) Crystal structure and nuclear magnetic resonance analyses of the SAND domain from glucocorticoid modulatory element binding protein-1 reveals deoxyribonucleic acid and zinc binding regions. Mol Endocrinol 17(7):1283–1295

    Article  PubMed  CAS  Google Scholar 

  102. Thiru A et al. (2004) Structural basis of HP1/PXVXL motif peptide interactions and HP1 localisation to heterochromatin. Embo J 23(3):489–499

    Article  CAS  PubMed  Google Scholar 

  103. Turner BM (2002) Cellular memory and the histone code. Cell 111(3):285–291

    Article  CAS  PubMed  Google Scholar 

  104. Vermaak D et al. (1999) Functional analysis of the SIN3-histone deacetylase RPD3-RbAp48-histone H4 connection in the Xenopus oocyte. Mol Cell Biol 19(9):5847–5860

    CAS  PubMed  Google Scholar 

  105. Verreault A et al. (1998) Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase. Curr Biol 8(2):96–108

    Article  CAS  PubMed  Google Scholar 

  106. Wang WK et al. (2003) Malignant brain tumor repeats: a three-leaved propeller architecture with ligand/peptide binding pockets. Structure (Camb) 11(7):775–789

    Article  CAS  PubMed  Google Scholar 

  107. Wilsker D et al. (2004) The DNA-binding properties of the ARID-containing subunits of yeast and mammalian SWI/SNF complexes. Nucleic Acids Res 32(4):1345–1353

    Article  CAS  PubMed  Google Scholar 

  108. Wilsker D et al. (2005) Nomenclature of the ARID family of DNA-binding proteins. Genomics 86(2):242–251

    Article  CAS  PubMed  Google Scholar 

  109. Wood LD et al. (2003) Small ubiquitin-like modifier conjugation regulates nuclear export of TEL, a putative tumor suppressor. Proc Natl Acad Sci USA 100(6):3257–3262

    Article  CAS  PubMed  Google Scholar 

  110. Wysocka J et al. (2005) WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121(6):859–872

    Article  CAS  PubMed  Google Scholar 

  111. Yu J et al. (2003) A SANT motif in the SMRT corepressor interprets the histone code and promotes histone deacetylation. Embo J 22(13):3403–3410

    Article  CAS  PubMed  Google Scholar 

  112. Zeng L, Zhou MM (2002) Bromodomain: an acetyl-lysine binding domain. FEBS Lett 513(1):124–128

    Article  CAS  PubMed  Google Scholar 

  113. Zhang Z et al. (2002) Structure and function of the BAH-containing domain of Orc1p in epigenetic silencing. Embo J 21(17):4600–4611

    CAS  Google Scholar 

  114. Zheng N et al. (1999) Structural basis of DNA recognition by the heterodimeric cell cycle transcription factor E2F-DP. Genes Dev 13(6):666–674

    CAS  PubMed  Google Scholar 

  115. Zhou Y, Grummt I (2005) The PHD finger/bromodomain of NoRC interacts with acetylated histone H4K16 and is sufficient for rDNA silencing. Curr Biol 15(15):1434–1438

    Article  CAS  PubMed  Google Scholar 

  116. Zhu L et al. (2001) Dynamics of the Mrf-2 DNA-binding domain free and in complex with DNA. Biochemistry 40(31):9142–9150

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a fellowship from the Terry Fox Foundation/National Cancer Institute of Canada (to K.L.Y.) and by grants from the National Institutes of Health (to M.-M.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Ming Zhou .

Editor information

Brehon C. Laurent

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Yap, K.L., Zhou, MM. Structure and Function of Protein Modules in Chromatin Biology. In: Laurent, B.C. (eds) Chromatin Dynamics in Cellular Function. Results and Problems in Cell Differentiation, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/400_010

Download citation

Publish with us

Policies and ethics