Structure and Function of Protein Modules in Chromatin Biology

  • Kyoko L. Yap
  • Ming-Ming ZhouEmail author
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 41)


Chromatin-mediated gene transcription or silencing is a dynamic process in which binding of various proteins or protein complexes can displace nucleosomal histones from DNA to relieve repression or drive the gene into a highly repressed, silent state. Covalent modifications to DNA and histones associated with chromatin structural change play a crucial role in transcriptional regulation, with particular modifications on certain residues associated with a specific transcriptional outcome. In recent years a number of structural domains have been identified within chromatin-associated proteins, including DNA or RNA binding domains, protein-protein interaction domains and domains that recognize specific covalent modifications to histone tails. In this review we discuss the structural features of these protein modules and the functional roles they play in chromatin biology.


Spinal Muscular Atrophy Protein Module Origin Recognition Complex Protein Interaction Domain PWWP Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by a fellowship from the Terry Fox Foundation/National Cancer Institute of Canada (to K.L.Y.) and by grants from the National Institutes of Health (to M.-M.Z.).


  1. 1.
    Aapola U, Liiv I, Peterson P (2002) Imprinting regulator DNMT3L is a transcriptional repressor associated with histone deacetylase activity. Nucleic Acids Res 30(16):3602–3608 CrossRefPubMedGoogle Scholar
  2. 2.
    Aasland R, Gibson TJ, Stewart AF (1995) The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem Sci 20(2):56–59 CrossRefPubMedGoogle Scholar
  3. 3.
    Aasland R, Stewart AF (1995) The chromo shadow domain, a second chromo domain in heterochromatin-binding protein 1, HP1. Nucleic Acids Res 23(16):3168–3173 PubMedGoogle Scholar
  4. 4.
    Akhtar A, Zink D, Becker PB (2000) Chromodomains are protein-RNA interaction modules. Nature 407(6802):405–409 CrossRefPubMedGoogle Scholar
  5. 5.
    Aravind L, Iyer LM (2002) The SWIRM domain: a conserved module found in chromosomal proteins points to novel chromatin-modifying activities. Genome Biol 3(8):RESEARCH0039 CrossRefPubMedGoogle Scholar
  6. 6.
    Aravind L, Koonin EV (1998) The HORMA domain: a common structural denominator in mitotic checkpoints, chromosome synapsis and DNA repair. Trends Biochem Sci 23(8):284–286 CrossRefPubMedGoogle Scholar
  7. 7.
    Arnan C et al. (2003) Interaction of nucleoplasmin with core histones. J Biol Chem 278(33):31319–31324 CrossRefPubMedGoogle Scholar
  8. 8.
    Ball LJ et al. (1997) Structure of the chromatin binding (chromo) domain from mouse modifier protein 1. Embo J 16(9):2473–2481 Google Scholar
  9. 9.
    Banerjee-Basu S et al. (1999) The Homeodomain Resource: sequences, structures and genomic information. Nucleic Acids Res 27(1):336–337 CrossRefPubMedGoogle Scholar
  10. 10.
    Bannister AJ et al. (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410(6824):120–124 CrossRefPubMedGoogle Scholar
  11. 11.
    Bennett-Lovsey R et al. (2002) The SWIB and the MDM2 domains are homologous and share a common fold. Bioinformatics 18(4):626–630 CrossRefPubMedGoogle Scholar
  12. 12.
    Bordoli L et al. (2001) Functional analysis of the p300 acetyltransferase domain: the PHD finger of p300 but not of CBP is dispensable for enzymatic activity. Nucleic Acids Res 29(21):4462–4471 CrossRefPubMedGoogle Scholar
  13. 13.
    Bottomley MJ et al. (2001) The SAND domain structure defines a novel DNA-binding fold in transcriptional regulation. Nat Struct Biol 8(7):626–633 CrossRefPubMedGoogle Scholar
  14. 14.
    Bottomley MJ (2004) Structures of protein domains that create or recognize histone modifications. EMBORep 5(5):464–469 Google Scholar
  15. 15.
    Boyer LA et al. (2002) Essential role for the SANT domain in the functioning of multiple chromatin remodeling enzymes. Mol Cell 10(4):935–942 CrossRefPubMedGoogle Scholar
  16. 16.
    Boyer LA, Latek RR, Peterson CL (2004) The SANT domain: a unique histone-tail-binding module? Nat Rev Mol Cell Biol 5(2):158–163 CrossRefPubMedGoogle Scholar
  17. 17.
    Brahms H et al. (2001) Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B′and the Sm-like protein LSm4, and their interaction with the SMN protein. RNA 7(11):1531–1542 CrossRefPubMedGoogle Scholar
  18. 18.
    Brasher SV et al. (2000) The structure of mouse HP1 suggests a unique mode of single peptide recognition by the shadow chromo domain dimer. Embo J 19(7):1587–1597 CrossRefPubMedGoogle Scholar
  19. 19.
    Callebaut I, Courvalin JC, Mornon JP (1999) The BAH (bromo-adjacent homology) domain: a link between DNA methylation, replication and transcriptional regulation. FEBS Lett 446(1):189–193 CrossRefPubMedGoogle Scholar
  20. 20.
    Cao R et al. (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298(5595):1039–1043 CrossRefPubMedGoogle Scholar
  21. 21.
    Capili AD et al. (2001) Solution structure of the PHD domain from the KAP-1 corepressor: structural determinants for PHD, RING and LIM zinc-binding domains. Embo J 20(1–2):165–177 CrossRefPubMedGoogle Scholar
  22. 22.
    Chavali GB et al. (2005) Crystal structure of the ENT domain of human EMSY. J Mol Biol 350(5):964–973 CrossRefPubMedGoogle Scholar
  23. 23.
    Col E et al. (2001) The histone acetyltransferase, hGCN5, interacts with and acetylates the HIV transactivator, Tat. J Biol Chem 276(30):28179–28184 CrossRefPubMedGoogle Scholar
  24. 24.
    Cote J, Richard S (2005) Tudor domains bind symmetrical dimethylated arginines. J Biol Chem 280(31):28476–28483 CrossRefPubMedGoogle Scholar
  25. 25.
    Dhalluin C et al. (1999) Structure and ligand of a histone acetyltransferase bromodomain. Nature 399(6735):491–496 Google Scholar
  26. 26.
    Dorr A et al. (2002) Transcriptional synergy between Tat and PCAF is dependent on the binding of acetylated Tat to the PCAF bromodomain. Embo J 21(11):2715–2723 CrossRefPubMedGoogle Scholar
  27. 27.
    Dutta S et al. (2001) The crystal structure of nucleoplasmin-core: implications for histone binding and nucleosome assembly. Mol Cell 8(4):841–853 CrossRefPubMedGoogle Scholar
  28. 28.
    Eberharter A et al. (2001) Acf1, the largest subunit of CHRAC, regulates ISWI-induced nucleosome remodelling. Embo J 20(14):3781–3788 CrossRefPubMedGoogle Scholar
  29. 29.
    Eberharter A et al. (2004) ACF1 improves the effectiveness of nucleosome mobilization by ISWI through PHD-histone contacts. Embo J 23(20):4029–4039 CrossRefPubMedGoogle Scholar
  30. 30.
    Ekblad CM et al. (2005) Binding of EMSY to HP1beta: implications for recruitment of HP1beta and BS69. EMBO Rep 6(7):675–680 CrossRefPubMedGoogle Scholar
  31. 31.
    Ekman D et al. (2005) Multi-domain proteins in the three kingdoms of life: orphan domains and other unassigned regions. J Mol Biol 348(1):231–243 CrossRefPubMedGoogle Scholar
  32. 32.
    Friesen WJ et al. (2001) SMN, the product of the spinal muscular atrophy gene, binds preferentially to dimethylarginine-containing protein targets. Mol Cell 7(5):1111–1117 CrossRefPubMedGoogle Scholar
  33. 33.
    Ge YZ et al. (2004) Chromatin targeting of de novo DNA methyltransferases by the PWWP domain. J Biol Chem 279(24):25447–25454 CrossRefPubMedGoogle Scholar
  34. 34.
    Gibson TJ et al. (1998) The APECED polyglandular autoimmune syndrome protein, AIRE-1, contains the SAND domain and is probably a transcription factor. Trends Biochem Sci 23(7):242–244 CrossRefPubMedGoogle Scholar
  35. 35.
    Goodwin GH, Nicolas RH (2001) The BAH domain, polybromo and the RSC chromatin remodelling complex. Gene 268(1–2):1–7 CrossRefPubMedGoogle Scholar
  36. 36.
    Gozani O et al. (2003) The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell 114(1):99–111 CrossRefPubMedGoogle Scholar
  37. 37.
    Green JB et al. (2003) RNA recognition via the SAM domain of Smaug. Mol Cell 11(6):1537–1548 CrossRefPubMedGoogle Scholar
  38. 38.
    Grune T et al. (2003) Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI. Mol Cell 12(2):449–460 CrossRefPubMedGoogle Scholar
  39. 39.
    Halbach T, Scheer N, Werr W (2000) Transcriptional activation by the PHD finger is inhibited through an adjacent leucine zipper that binds 14-3-3 proteins. Nucleic Acids Res 28(18):3542–3550 CrossRefPubMedGoogle Scholar
  40. 40.
    Haynes SR et al. (1992) The bromodomain: a conserved sequence found in human, Drosophila and yeast proteins. Nucleic Acids Res 20(10):2603 PubMedGoogle Scholar
  41. 41.
    Hennig L, Bouveret R, Gruissem W (2005) MSI1-like proteins: an escort service for chromatin assembly and remodeling complexes. Trends Cell Biol 15(6):295–302 CrossRefPubMedGoogle Scholar
  42. 42.
    Hou Z et al. (2005) Structural basis of the Sir1-origin recognition complex interaction in transcriptional silencing. Proc Natl Acad Sci USA 102(24):8489–8494 CrossRefPubMedGoogle Scholar
  43. 43.
    Hsu HC, Stillman B, Xu RM (2005) Structural basis for origin recognition complex 1 protein-silence information regulator 1 protein interaction in epigenetic silencing. Proc Natl Acad Sci USA 102(24):8519–8524 CrossRefPubMedGoogle Scholar
  44. 44.
    Hudson BP et al. (2000) Solution structure and acetyl-lysine binding activity of the GCN5 bromodomain. J Mol Biol 304:355–370 CrossRefPubMedGoogle Scholar
  45. 45.
    Huyen Y et al. (2004) Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432(7015):406–411 CrossRefPubMedGoogle Scholar
  46. 46.
    Ito T et al. (1996) ATP-facilitated chromatin assembly with a nucleoplasmin-like protein from Drosophila melanogaster. J Biol Chem 271(40):25041–25048 CrossRefPubMedGoogle Scholar
  47. 47.
    Ito T et al. (1999) ACF consists of two subunits, Acf1 and ISWI, that function cooperatively in the ATP-dependent catalysis of chromatin assembly. Genes Dev 13(12):1529–1539 PubMedGoogle Scholar
  48. 48.
    Iwahara J et al. (2002) The structure of the Dead ringer-DNA complex reveals how AT-rich interaction domains (ARIDs) recognize DNA. Embo J 21(5):1197–1209 CrossRefPubMedGoogle Scholar
  49. 49.
    Jacobs SA, Khorasanizadeh S (2002) Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science 295(5562):2080–2083 Google Scholar
  50. 50.
    Jacobson RH et al. (2000) Structure and function of a human TAFII250 double bromodomain module. Science 288:1422–1425 Google Scholar
  51. 51.
    Jeanmougin F et al. (1997) The bromodomain revisited. Trends Biochem Sci 22(5):151–153 CrossRefPubMedGoogle Scholar
  52. 52.
    Kalkhoven E et al. (2002) The PHD type zinc finger is an integral part of the CBP acetyltransferase domain. Mol Cell Biol 22(7):1961–1970 CrossRefPubMedGoogle Scholar
  53. 53.
    Kalkhoven E et al. (2003) Loss of CBP acetyltransferase activity by PHD finger mutations in Rubinstein-Taybi syndrome. Hum Mol Genet 12(4):441–450 CrossRefPubMedGoogle Scholar
  54. 54.
    Kanno T et al. (2004) Selective recognition of acetylated histones by bromodomain proteins visualized in living cells. Mol Cell 13(1):33–43 CrossRefPubMedGoogle Scholar
  55. 55.
    Kasten M et al. (2004) Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14. Embo J 23(6):1348–1359 CrossRefPubMedGoogle Scholar
  56. 56.
    Kim CA et al. (2002) The SAM domain of polyhomeotic forms a helical polymer. Nat Struct Biol 9(6):453–457 PubMedGoogle Scholar
  57. 57.
    Kim CA et al. (2005) Structural organization of a Sex-comb-on-midleg/polyhomeotic copolymer. J Biol Chem 280(30):27769–27775 CrossRefPubMedGoogle Scholar
  58. 58.
    Kim S et al. (2004) Structure and DNA-binding sites of the SWI1 AT-rich interaction domain (ARID) suggest determinants for sequence-specific DNA recognition. J Biol Chem 279(16):16670–16676 CrossRefPubMedGoogle Scholar
  59. 59.
    Kodandapani R et al. (1996) A new pattern for helix-turn-helix recognition revealed by the PU.1 ETS-domain-DNA complex. Nature 380(6573):456–460 CrossRefPubMedGoogle Scholar
  60. 60.
    Kortschak RD, Tucker PW, Saint R (2000) ARID proteins come in from the desert. Trends Biochem Sci 25(6):294–299 CrossRefPubMedGoogle Scholar
  61. 61.
    Kwan AH et al. (2003) Engineering a protein scaffold from a PHD finger. Structure (Camb) 11(7):803–813 CrossRefPubMedGoogle Scholar
  62. 62.
    Lachner M et al. (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410(6824):116–120 CrossRefPubMedGoogle Scholar
  63. 63.
    Ladurner AG et al. (2003) Bromodomains mediate an acetyl-histone encoded antisilencing function at heterochromatin boundaries. Mol Cell 11(2):365–376 CrossRefPubMedGoogle Scholar
  64. 64.
    Lu Z et al. (2002) The PHD domain of MEKK1 acts as an E3 ubiquitin ligase and mediates ubiquitination and degradation of ERK1/2. Mol Cell 9(5):945–956 CrossRefPubMedGoogle Scholar
  65. 65.
    Martinez-Campa C et al. (2004) Precise nucleosome positioning and the TATA box dictate requirements for the histone H4 tail and the bromodomain factor Bdf1. Mol Cell 15(1):69–81 CrossRefPubMedGoogle Scholar
  66. 66.
    Matangkasombut O, Buratowski S (2003) Different sensitivities of bromodomain factors 1 and 2 to histone H4 acetylation. Mol Cell 11(2):353–363 CrossRefPubMedGoogle Scholar
  67. 67.
    Maurer-Stroh S et al. (2003) The Tudor domain Royal Family: Tudor, plant Agenet, Chromo, PWWP and MBT domains. Trends Biochem Sci 28(2):69–74 CrossRefPubMedGoogle Scholar
  68. 68.
    Min J, Zhang Y, Xu RM (2003) Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev 17(15):1823–1828 CrossRefPubMedGoogle Scholar
  69. 69.
    Mujtaba S et al. (2002) Structural basis of lysine-acetylated HIV-1 Tat recognition by PCAF bromodomain. Mol Cell 9(3):575–586 CrossRefPubMedGoogle Scholar
  70. 70.
    Mujtaba S et al. (2004) Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation. Mol Cell 13(2):251–263 CrossRefPubMedGoogle Scholar
  71. 71.
    Nakayama J et al. (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292(5514):110–113 CrossRefPubMedGoogle Scholar
  72. 72.
    Namboodiri VM et al. (2003) The crystal structure of Drosophila NLP-core provides insight into pentamer formation and histone binding. Structure (Camb) 11(2):175–186 CrossRefPubMedGoogle Scholar
  73. 73.
    Nameki N et al. (2005) Solution structure of the PWWP domain of the hepatoma-derived growth factor family. Protein Sci 14(3):756–764 CrossRefPubMedGoogle Scholar
  74. 74.
    Nielsen PR et al. (2002) Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature 416(6876):103–107 Google Scholar
  75. 75.
    Nielsen PR et al. (2005) Structure of the chromo barrel domain from the MOF acetyltransferase. J Biol Chem 280(37):32326–32331 CrossRefPubMedGoogle Scholar
  76. 76.
    Noguchi E et al. (2003) Swi1 prevents replication fork collapse and controls checkpoint kinase Cds1. Mol Cell Biol 23(21):7861–7874 CrossRefPubMedGoogle Scholar
  77. 77.
    Oliver AW et al. (2005) Crystal structure of the proximal BAH domain of the polybromo protein. Biochem J 389(Pt 3):657–664 Google Scholar
  78. 78.
    Ornaghi P et al. (1999) The bromodomain of Gcn5p interacts in vitro with specific residues in the N terminus of histone H4. J Mol Biol 287(1):1–7 CrossRefPubMedGoogle Scholar
  79. 79.
    Owen DJ et al. (2000) The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. Embo J 19(22):6141–6149 CrossRefPubMedGoogle Scholar
  80. 80.
    Pak DT et al. (1997) Association of the origin recognition complex with heterochromatin and HP1 in higher eukaryotes. Cell 91(3):311–323 CrossRefPubMedGoogle Scholar
  81. 81.
    Pascual J et al. (2000) Structure of the PHD zinc finger from human Williams-Beuren syndrome transcription factor. J Mol Biol 304(5):723–729 CrossRefPubMedGoogle Scholar
  82. 82.
    Patsialou A, Wilsker D, Moran E (2005) DNA-binding properties of ARID family proteins. Nucleic Acids Res 33(1):66–80 CrossRefPubMedGoogle Scholar
  83. 83.
    Polesskaya A et al. (2001) Interaction between acetylated MyoD and the bromodomain of CBP and/or p300. Mol Cell Biol 21(16):5312–5320 CrossRefPubMedGoogle Scholar
  84. 84.
    Poot RA et al. (2000) HuCHRAC, a human ISWI chromatin remodelling complex contains hACF1 and two novel histone-fold proteins. Embo J 19(13):3377–3387 CrossRefPubMedGoogle Scholar
  85. 85.
    Pray-Grant MG et al. (2005) Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature 433(7024):434–438 CrossRefPubMedGoogle Scholar
  86. 86.
    Qian C et al. (2005) Structure and chromosomal DNA binding of the SWIRM domain. Nat Struct Mol Biol 12(12):1078–1085 CrossRefPubMedGoogle Scholar
  87. 87.
    Qiao F, Bowie JU (2005) The many faces of SAM. Sci STKE 2005(286):re7 Google Scholar
  88. 88.
    Qiu C et al. (2002) The PWWP domain of mammalian DNA methyltransferase Dnmt3b defines a new family of DNA-binding folds. Nat Struct Biol 9(3):217–224 PubMedGoogle Scholar
  89. 89.
    Ragvin A et al. (2004) Nucleosome binding by the bromodomain and PHD finger of the transcriptional cofactor p300. J Mol Biol 337(4):773–788 CrossRefPubMedGoogle Scholar
  90. 90.
    Ramakrishnan V et al. (1993) Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature 362(6417):219–223 CrossRefPubMedGoogle Scholar
  91. 91.
    Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70:81–120 CrossRefPubMedGoogle Scholar
  92. 92.
    Sathyamurthy A et al. (2003) Crystal structure of the malignant brain tumor (MBT) repeats in Sex Comb on Midleg-like 2 (SCML2). J Biol Chem 278(47):46968–46973 CrossRefPubMedGoogle Scholar
  93. 93.
    Selenko P et al. (2001) SMN tudor domain structure and its interaction with the Sm proteins. Nat Struct Biol 8(1):27–31 CrossRefPubMedGoogle Scholar
  94. 94.
    Shamay M et al. (2002) Hepatitis B virus pX interacts with HBXAP, a PHD finger protein to coactivate transcription. J Biol Chem 277(12):9982–9988 CrossRefPubMedGoogle Scholar
  95. 95.
    Shi Y et al. (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119(7):941–953 CrossRefPubMedGoogle Scholar
  96. 96.
    Simic R et al. (2003) Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes. Embo J 22(8):1846–1856 CrossRefPubMedGoogle Scholar
  97. 97.
    Slater LM, Allen MD, Bycroft M (2003) Structural variation in PWWP domains. J Mol Biol 330(3):571–576 CrossRefPubMedGoogle Scholar
  98. 98.
    Smith TF et al. (1999) The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 24(5):181–185 CrossRefPubMedGoogle Scholar
  99. 99.
    Stec I et al. (2000) The PWWP domain: a potential protein–protein interaction domain in nuclear proteins influencing differentiation? FEBS Lett 473(1):1–5 CrossRefPubMedGoogle Scholar
  100. 100.
    Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45 CrossRefPubMedGoogle Scholar
  101. 101.
    Surdo PL et al. (2003) Crystal structure and nuclear magnetic resonance analyses of the SAND domain from glucocorticoid modulatory element binding protein-1 reveals deoxyribonucleic acid and zinc binding regions. Mol Endocrinol 17(7):1283–1295 CrossRefPubMedGoogle Scholar
  102. 102.
    Thiru A et al. (2004) Structural basis of HP1/PXVXL motif peptide interactions and HP1 localisation to heterochromatin. Embo J 23(3):489–499 CrossRefPubMedGoogle Scholar
  103. 103.
    Turner BM (2002) Cellular memory and the histone code. Cell 111(3):285–291 CrossRefPubMedGoogle Scholar
  104. 104.
    Vermaak D et al. (1999) Functional analysis of the SIN3-histone deacetylase RPD3-RbAp48-histone H4 connection in the Xenopus oocyte. Mol Cell Biol 19(9):5847–5860 PubMedGoogle Scholar
  105. 105.
    Verreault A et al. (1998) Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase. Curr Biol 8(2):96–108 CrossRefPubMedGoogle Scholar
  106. 106.
    Wang WK et al. (2003) Malignant brain tumor repeats: a three-leaved propeller architecture with ligand/peptide binding pockets. Structure (Camb) 11(7):775–789 CrossRefPubMedGoogle Scholar
  107. 107.
    Wilsker D et al. (2004) The DNA-binding properties of the ARID-containing subunits of yeast and mammalian SWI/SNF complexes. Nucleic Acids Res 32(4):1345–1353 CrossRefPubMedGoogle Scholar
  108. 108.
    Wilsker D et al. (2005) Nomenclature of the ARID family of DNA-binding proteins. Genomics 86(2):242–251 CrossRefPubMedGoogle Scholar
  109. 109.
    Wood LD et al. (2003) Small ubiquitin-like modifier conjugation regulates nuclear export of TEL, a putative tumor suppressor. Proc Natl Acad Sci USA 100(6):3257–3262 CrossRefPubMedGoogle Scholar
  110. 110.
    Wysocka J et al. (2005) WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121(6):859–872 CrossRefPubMedGoogle Scholar
  111. 111.
    Yu J et al. (2003) A SANT motif in the SMRT corepressor interprets the histone code and promotes histone deacetylation. Embo J 22(13):3403–3410 CrossRefPubMedGoogle Scholar
  112. 112.
    Zeng L, Zhou MM (2002) Bromodomain: an acetyl-lysine binding domain. FEBS Lett 513(1):124–128 CrossRefPubMedGoogle Scholar
  113. 113.
    Zhang Z et al. (2002) Structure and function of the BAH-containing domain of Orc1p in epigenetic silencing. Embo J 21(17):4600–4611 Google Scholar
  114. 114.
    Zheng N et al. (1999) Structural basis of DNA recognition by the heterodimeric cell cycle transcription factor E2F-DP. Genes Dev 13(6):666–674 PubMedGoogle Scholar
  115. 115.
    Zhou Y, Grummt I (2005) The PHD finger/bromodomain of NoRC interacts with acetylated histone H4K16 and is sufficient for rDNA silencing. Curr Biol 15(15):1434–1438 CrossRefPubMedGoogle Scholar
  116. 116.
    Zhu L et al. (2001) Dynamics of the Mrf-2 DNA-binding domain free and in complex with DNA. Biochemistry 40(31):9142–9150 CrossRefPubMedGoogle Scholar

Authors and Affiliations

  1. 1.Structural Biology Program, Department of Physiology and BiophysicsMount Sinai School of Medicine, New York UniversityNew YorkUSA

Personalised recommendations