Chromatin Modifications in DNA Repair

  • Ashby J. Morrison
  • Xuetong ShenEmail author
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 41)


A requirement of nuclear processes that use DNA as a substrate is the manipulation of chromatin in which the DNA is packaged. Chromatin modifications cause alterations of histones and DNA, and result in a permissive chromatin environment for these nuclear processes. Recent advances in the fields of DNA repair and chromatin reveal that both histone modifications and chromatin-remodeling complexes are essential for the repair of DNA lesions, such as DNA double strand breaks (DSBs). In particular, chromatin-modifying complexes, such as the INO80, SWR1, RSC, and SWI/SNF ATP-dependent chromatin-remodeling complexes and the NuA4 and Tip60 histone acetyltransferase complexes are implicated in DNA repair. The activity of these chromatin-modifying complexes influences the efficiency of the DNA repair process, which ultimately affects genome integrity and carcinogenesis. Thus, the process of DNA repair requires the cooperative activities of evolutionarily conserved chromatin-modifying complexes that facilitate the dynamic chromatin alterations needed during repair of DNA damage.


Nijmegen Breakage Syndrome Histone H2AX H2AX Phosphorylation Histone Acetyltransferase Complex INO80 Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahn SH, Cheung WL, Hsu JY, Diaz RL, Smith MM, Allis CD (2005) Sterile 20 kinase phosphorylates histone H2B at serine 10 during hydrogen peroxide-induced apoptosis in S. cerevisiae. Cell 120:25–36 CrossRefPubMedGoogle Scholar
  2. 2.
    Alexeev A, Mazin A, Kowalczykowski SC (2003) Rad54 protein possesses chromatin-remodeling activity stimulated by the Rad51-ssDNA nucleoprotein filament. Nat Struct Biol 10:182–186 CrossRefPubMedGoogle Scholar
  3. 3.
    Alexiadis V, Kadonaga JT (2002) Strand pairing by Rad54 and Rad51 is enhanced by chromatin. Genes Dev 16:2767–2771 CrossRefPubMedGoogle Scholar
  4. 4.
    Armstrong JA, Emerson BM (1998) Transcription of chromatin: these are complex times. Curr Opin Genet Dev 8:165–172 CrossRefPubMedGoogle Scholar
  5. 5.
    Bassing CH, Chua KF, Sekiguchi J, Suh H, Whitlow SR, Fleming JC, Monroe BC, Ciccone DN, Yan C, Vlasakova K, Livingston DM, Ferguson DO, Scully R, Alt FW (2002) Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proc Natl Acad Sci USA 99:8173–8178 CrossRefPubMedGoogle Scholar
  6. 6.
    Bassing CH, Suh H, Ferguson DO, Chua KF, Manis J, Eckersdorff M, Gleason M, Bronson R, Lee C, Alt FW (2003) Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell 114:359–370 CrossRefPubMedGoogle Scholar
  7. 7.
    Becker PB, Horz W (2002) ATP-dependent nucleosome remodeling. Annu Rev Biochem 71:247–273 CrossRefPubMedGoogle Scholar
  8. 8.
    Bird AW, Yu DY, Pray-Grant MG, Qiu Q, Harmon KE, Megee PC, Grant PA, Smith MM, Christman MF (2002) Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature 419:411–415 CrossRefPubMedGoogle Scholar
  9. 9.
    Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T (1998) Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391:597–601 CrossRefPubMedGoogle Scholar
  10. 10.
    Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ (2001) ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276:42462–42467 CrossRefPubMedGoogle Scholar
  11. 11.
    Burns LG, Peterson CL (1997) The yeast SWI-SNF complex facilitates binding of a transcriptional activator to nucleosomal sites in vivo. Mol Cell Biol 17:4811–4819 PubMedGoogle Scholar
  12. 12.
    Celeste A, Difilippantonio S, Difilippantonio MJ, Fernandez-Capetillo O, Pilch DR, Sedelnikova OA, Eckhaus M, Ried T, Bonner WM, Nussenzweig A (2003a) H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 114:371–383 CrossRefPubMedGoogle Scholar
  13. 13.
    Celeste A, Fernandez-Capetillo O, Kruhlak MJ, Pilch DR, Staudt DW, Lee A, Bonner RF, Bonner WM, Nussenzweig A (2003b) Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol 5:675–679 CrossRefPubMedGoogle Scholar
  14. 14.
    Celeste A, Petersen S, Romanienko PJ, Fernandez-Capetillo O, Chen HT, Sedelnikova OA, Reina-San-Martin B, Coppola V, Meffre E, Difilippantonio MJ, Redon C, Pilch DR, Olaru A, Eckhaus M, Camerini-Otero RD, Tessarollo L, Livak F, Manova K, Bonner WM, Nussenzweig MC, Nussenzweig A (2002) Genomic instability in mice lacking histone H2AX. Science 296:922–927 CrossRefPubMedGoogle Scholar
  15. 15.
    Chai B, Huang J, Cairns BR, Laurent BC (2005) Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes Dev 19:1656–1661 CrossRefPubMedGoogle Scholar
  16. 16.
    Cheung WL, Ajiro K, Samejima K, Kloc M, Cheung P, Mizzen CA, Beeser A, Etkin LD, Chernoff J, Earnshaw WC, Allis CD (2003) Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell 113:507–517 CrossRefPubMedGoogle Scholar
  17. 17.
    Downs JA, Allard S, Jobin-Robitaille O, Javaheri A, Auger A, Bouchard N, Kron SJ, Jackson SP, Cote J (2004) Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol Cell 16:979–990 CrossRefPubMedGoogle Scholar
  18. 18.
    Downs JA, Lowndes NF, Jackson SP (2000) A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408:1001–1004 CrossRefPubMedGoogle Scholar
  19. 19.
    Doyon Y, Selleck W, Lane WS, Tan S, Cote J (2004) Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans. Mol Cell Biol 24:1884–1896 CrossRefPubMedGoogle Scholar
  20. 20.
    Eisen JA, Sweder KS, Hanawalt PC (1995) Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res 23:2715–2723 PubMedCrossRefGoogle Scholar
  21. 21.
    Fernandez-Capetillo O, Allis CD, Nussenzweig A (2004) Phosphorylation of histone H2B at DNA double-strand breaks. J Exp Med 199:1671–1677 CrossRefPubMedGoogle Scholar
  22. 22.
    Fritsch O, Benvenuto G, Bowler C, Molinier J, Hohn B (2004) The INO80 protein controls homologous recombination in Arabidopsis thaliana. Mol Cell 16:479–485 CrossRefPubMedGoogle Scholar
  23. 23.
    Fyodorov DV, Kadonaga JT (2001) The many faces of chromatin remodeling: SWItching beyond transcription. Cell 106:523–525 CrossRefPubMedGoogle Scholar
  24. 24.
    Giannattasio M, Lazzaro F, Plevani P, Muzi-Falconi M (2005) The DNA damage checkpoint response requires histone H2B ubiquitination by Rad6-Bre1 and H3 methylation by Dot1. J Biol Chem 280:9879–9886 CrossRefPubMedGoogle Scholar
  25. 25.
    Harvey AC, Jackson SP, Downs JA (2005) Saccharomyces cerevisiae histone H2A Ser122 facilitates DNA repair. Genetics 170:543–553 CrossRefPubMedGoogle Scholar
  26. 26.
    Hirschhorn JN, Brown SA, Clark CD, Winston F (1992) Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev 6:2288–2298 PubMedCrossRefGoogle Scholar
  27. 27.
    Huyen Y, Zgheib O, Ditullio RA Jr, Gorgoulis VG, Zacharatos P, Petty TJ, Sheston EA, Mellert HS, Stavridi ES, Halazonetis TD (2004) Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432:406–411 CrossRefPubMedGoogle Scholar
  28. 28.
    Ikura T, Ogryzko VV, Grigoriev M, Groisman R, Wang J, Horikoshi M, Scully R, Qin J, Nakatani Y (2000) Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102:463–473 CrossRefPubMedGoogle Scholar
  29. 29.
    Jaskelioff M, Van Komen S, Krebs JE, Sung P, Peterson CL (2003) Rad54p is a chromatin remodeling enzyme required for heteroduplex DNA joint formation with chromatin. J Biol Chem 278:9212–9218 CrossRefPubMedGoogle Scholar
  30. 30.
    Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080 CrossRefPubMedGoogle Scholar
  31. 31.
    Kadonaga JT (1998) Eukaryotic transcription: an interlaced network of transcription factors and chromatin-modifying machines. Cell 92:307–313 CrossRefPubMedGoogle Scholar
  32. 32.
    Kanemaki M, Makino Y, Yoshida T, Kishimoto T, Koga A, Yamamoto K, Yamamoto M, Moncollin V, Egly JM, Muramatsu M, Tamura T (1997) Molecular cloning of a rat 49-kDa TBP-interacting protein (TIP49) that is highly homologous to the bacterial RuvB. Biochem Biophys Res Commun 235:64–68 CrossRefPubMedGoogle Scholar
  33. 33.
    Kim JS, Krasieva TB, LaMorte V, Taylor AM, Yokomori K (2002) Specific recruitment of human cohesin to laser-induced DNA damage. J Biol Chem 277:45149–45153 CrossRefPubMedGoogle Scholar
  34. 34.
    Kingston RE, Narlikar GJ (1999) ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev 13:2339–2352 CrossRefPubMedGoogle Scholar
  35. 35.
    Klochendler-Yeivin A, Muchardt C, Yaniv M (2002) SWI/SNF chromatin remodeling and cancer. Curr Opin Genet Dev 12:73–79 CrossRefPubMedGoogle Scholar
  36. 36.
    Kondo T, Wakayama T, Naiki T, Matsumoto K, Sugimoto K (2001) Recruitment of Mec1 and Ddc1 checkpoint proteins to double-strand breaks through distinct mechanisms. Science 294:867–870 CrossRefPubMedGoogle Scholar
  37. 37.
    Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98:285–294 CrossRefPubMedGoogle Scholar
  38. 38.
    Kusch T, Florens L, Macdonald WH, Swanson SK, Glaser RL, Yates JR 3rd, Abmayr SM, Washburn MP, Workman JL (2004) Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science 306:2084–2087 CrossRefPubMedGoogle Scholar
  39. 39.
    Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396:643–649 CrossRefPubMedGoogle Scholar
  40. 40.
    Luger K, Richmond TJ (1998) DNA binding within the nucleosome core. Curr Opin Struct Biol 8:33–40 CrossRefPubMedGoogle Scholar
  41. 41.
    Magnaghi-Jaulin L, Groisman R, Naguibneva I, Robin P, Lorain S, Le Villain JP, Troalen F, Trouche D, Harel-Bellan A (1998) Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 391:601–605 CrossRefPubMedGoogle Scholar
  42. 42.
    Mazin AV, Alexeev AA, Kowalczykowski SC (2003) A novel function of Rad54 protein. Stabilization of the Rad51 nucleoprotein filament. J Biol Chem 278:14029–14036 CrossRefPubMedGoogle Scholar
  43. 43.
    Melo JA, Cohen J, Toczyski DP (2001) Two checkpoint complexes are independently recruited to sites of DNA damage in vivo. Genes Dev 15:2809–2821 PubMedGoogle Scholar
  44. 44.
    Mizuguchi G, Shen X, Landry J, Wu WH, Sen S, Wu C (2004) ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303:343–348 CrossRefPubMedGoogle Scholar
  45. 45.
    Morrison AJ, Highland J, Krogan NJ, Arbel-Eden A, Greenblatt JF, Haber JE, Shen X (2004) INO80 and γ-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119:767–775 CrossRefPubMedGoogle Scholar
  46. 46.
    Morrison AJ, Sardet C, Herrera RE (2002) Retinoblastoma protein transcriptional repression through histone deacetylation of a single nucleosome. Mol Cell Biol 22:856–865 PubMedCrossRefGoogle Scholar
  47. 47.
    Nakada D, Matsumoto K, Sugimoto K (2003) ATM-related Tel1 associates with double-strand breaks through an Xrs2-dependent mechanism. Genes Dev 17:1957–1962 CrossRefPubMedGoogle Scholar
  48. 48.
    Nakamura TM, Du LL, Redon C, Russell P (2004) Histone H2A phosphorylation controls Crb2 recruitment at DNA breaks, maintains checkpoint arrest, and influences DNA repair in fission yeast. Mol Cell Biol 24:6215–6230 CrossRefPubMedGoogle Scholar
  49. 49.
    Neely KE, Workman JL (2002) The complexity of chromatin remodeling and its links to cancer. Biochim Biophys Acta 1603:19–29 PubMedGoogle Scholar
  50. 50.
    Nielsen SJ, Schneider R, Bauer UM, Bannister AJ, Morrison A, O'Carroll D, Firestein R, Cleary M, Jenuwein T, Herrera RE, Kouzarides T (2001) Rb targets histone H3 methylation and HP1 to promoters. Nature 412:561–565 CrossRefPubMedGoogle Scholar
  51. 51.
    Nourani A, Doyon Y, Utley RT, Allard S, Lane WS, Cote J (2001) Role of an ING1 growth regulator in transcriptional activation and targeted histone acetylation by the NuA4 complex. Mol Cell Biol 21:7629–7640 CrossRefPubMedGoogle Scholar
  52. 52.
    Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10:886–895 CrossRefPubMedGoogle Scholar
  53. 53.
    Redon C, Pilch DR, Rogakou EP, Orr AH, Lowndes NF, Bonner WM (2003) Yeast histone 2A serine 129 is essential for the efficient repair of checkpoint-blind DNA damage. EMBO Rep 4:678–684 CrossRefPubMedGoogle Scholar
  54. 54.
    Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868 CrossRefPubMedGoogle Scholar
  55. 55.
    Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70:81–120 CrossRefPubMedGoogle Scholar
  56. 56.
    Rouse J, Jackson SP (2002) Lcd1p recruits Mec1p to DNA lesions in vitro and in vivo. Mol Cell 9:857–869 CrossRefPubMedGoogle Scholar
  57. 57.
    Sanders SL, Portoso M, Mata J, Bahler J, Allshire RC, Kouzarides T (2004) Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell 119:603–614 CrossRefPubMedGoogle Scholar
  58. 58.
    Shen X, Mizuguchi G, Hamiche A, Wu C (2000) A chromatin remodelling complex involved in transcription and DNA processing. Nature 406:541–544 CrossRefPubMedGoogle Scholar
  59. 59.
    Shen X, Ranallo R, Choi E, Wu C (2003) Involvement of actin-related proteins in ATP-dependent chromatin remodeling. Mol Cell 12:147–155 CrossRefPubMedGoogle Scholar
  60. 60.
    Shim EY, Ma JL, Oum JH, Yanez Y, Lee SE (2005) The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA double-strand breaks. Mol Cell Biol 25:3934–3944 CrossRefPubMedGoogle Scholar
  61. 61.
    Shroff R, Arbel-Eden A, Pilch D, Ira G, Bonner WM, Petrini JH, Haber JE, Lichten M (2004) Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break. Curr Biol 14:1703–1711 CrossRefPubMedGoogle Scholar
  62. 62.
    Singer MS, Kahana A, Wolf AJ, Meisinger LL, Peterson SE, Goggin C, Mahowald M, Gottschling DE (1998) Identification of high-copy disruptors of telomeric silencing in Saccharomyces cerevisiae. Genetics 150:613–632 PubMedGoogle Scholar
  63. 63.
    Sjogren C, Nasmyth K (2001) Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae. Curr Biol 11:991–995 CrossRefPubMedGoogle Scholar
  64. 64.
    Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45 CrossRefPubMedGoogle Scholar
  65. 65.
    Strom L, Lindroos HB, Shirahige K, Sjogren C (2004) Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol Cell 16:1003–1015 CrossRefPubMedGoogle Scholar
  66. 66.
    Sudarsanam P, Iyer VR, Brown PO, Winston F (2000) Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97:3364–3369 CrossRefPubMedGoogle Scholar
  67. 67.
    Sugawara N, Wang X, Haber JE (2003) In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Mol Cell 12:209–219 CrossRefPubMedGoogle Scholar
  68. 68.
    Tsaneva IR, Muller B, West SC (1992) ATP-dependent branch migration of Holliday junctions promoted by the RuvA and RuvB proteins of E. coli. Cell 69:1171–1180 CrossRefPubMedGoogle Scholar
  69. 69.
    Tse C, Fletcher TM, Hansen JC (1998a) Enhanced transcription factor access to arrays of histone H3/H4 tetramer. DNA complexes in vitro: implications for replication and transcription. Proc Natl Acad Sci USA 95:12169–12173 CrossRefPubMedGoogle Scholar
  70. 70.
    Tse C, Sera T, Wolffe AP, Hansen JC (1998b) Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol Cell Biol 18:4629–4638 PubMedGoogle Scholar
  71. 71.
    Tsukiyama T (2002) The in vivo functions of ATP-dependent chromatin-remodelling factors. Nat Rev Mol Cell Biol 3:422–429 CrossRefPubMedGoogle Scholar
  72. 72.
    Tsukiyama T, Wu C (1995) Purification and properties of an ATP-dependent nucleosome remodeling factor. Cell 83:1011–1020 CrossRefPubMedGoogle Scholar
  73. 73.
    Tsukuda T, Fleming AB, Nickoloff JA, Osley MA (2005) Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae. Nature 438:379–383 CrossRefPubMedGoogle Scholar
  74. 74.
    Unal E, Arbel-Eden A, Sattler U, Shroff R, Lichten M, Haber JE, Koshland D (2004) DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol Cell 16:991–1002 CrossRefPubMedGoogle Scholar
  75. 75.
    van Attikum H, Fritsch O, Hohn B, Gasser SM (2004) Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 119:777–788 CrossRefPubMedGoogle Scholar
  76. 76.
    Versteege I, Sevenet N, Lange J, Rousseau-Merck MF, Ambros P, Handgretinger R, Aurias A, Delattre O (1998) Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394:203–206 CrossRefPubMedGoogle Scholar
  77. 77.
    Ward IM, Chen J (2001) Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem 276:47759–47762 CrossRefPubMedGoogle Scholar
  78. 78.
    Wolner B, van Komen S, Sung P, Peterson CL (2003) Recruitment of the recombinational repair machinery to a DNA double-strand break in yeast. Mol Cell 12:221–232 CrossRefPubMedGoogle Scholar
  79. 79.
    Workman JL, Kingston RE (1998) Alteration of nucleosome structure as a mechanism of transcriptional regulation. AnnRev Biochem 67:545–579 CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.University of Texas, M.D. Anderson Cancer CenterDepartment of Carcinogenesis, Science Park Research DivisionSmithvilleUSA

Personalised recommendations