The Roles of Chromatin Remodelling Factors in Replication

  • Ana Neves-Costa
  • Patrick Varga-WeiszEmail author
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 41)


Dynamic changes of chromatin structure control DNA-dependent events, including DNA replication. Along with DNA, chromatin organization must be replicated to maintain genetic and epigenetic information through cell generations. Chromatin remodelling is important for several steps in replication: determination and activation of origins of replication, replication machinery progression, chromatin assembly and DNA repair. Histone chaperones such as the FACT complex assist DNA replication within chromatin, probably by facilitating both nucleosome disassembly and reassembly. ATP-dependent nucleosome remodelling enzymes of the SWI/SNF family, in particular imitation switch (ISWI)-containing complexes, have been linked to DNA and chromatin replication. They are targeted to replication sites to facilitate DNA replication and subsequent chromatin assembly.


Proliferate Cell Nuclear Antigen Sister Chromatid Cohesion Origin Recognition Complex Chromatin Assembly Histone Chaperone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Tom Sexton for constructive criticism of this manuscript. ANC is funded by Fundação para a Ciência e Tecnologia. Work in the Varga-Weisz laboratory is funded by the Biotechnology and Biosciences Research Council, the Association for International Cancer Research, St. Andrews (AICR) and the European Network of Excellence (NoE).


  1. 1.
    Akey CW, Luger K (2003) Histone chaperones and nucleosome assembly. Curr Opin Struct Biol 13:6–14 CrossRefPubMedGoogle Scholar
  2. 2.
    Alexeev A, Mazin A, Kowalczykowski SC (2003) Rad54 protein possesses chromatin-remodeling activity stimulated by the Rad51-ssDNA nucleoprotein filament. Nat Struct Biol 10:182–186 CrossRefPubMedGoogle Scholar
  3. 3.
    Alexiadis V, Lusser A, Kadonaga JT (2004) A conserved N-terminal motif in Rad54 is important for chromatin remodeling and homologous strand pairing. J Biol Chem 279:27824–27829 CrossRefPubMedGoogle Scholar
  4. 4.
    Alexiadis V, Varga-Weisz PD, Bonte E, Becker PB, Gruss C (1998) In vitro chromatin remodelling by chromatin accessibility complex (CHRAC) at the SV40 origin of DNA replication. Embo J 17:3428–3438 CrossRefPubMedGoogle Scholar
  5. 5.
    Aligianni S, Varga-Weisz P (2005) Chromatin-remodelling factors and the maintenance of transcriptional states through DNA replication. Biochem Soc Symp 73:97–108 Google Scholar
  6. 6.
    Anderson LA, Perkins ND (2002) The large subunit of replication factor C interacts with the histone deacetylase, HDAC1. J Biol Chem 277:29550–29554 CrossRefPubMedGoogle Scholar
  7. 7.
    Annunziato AT (2005) Split decision: what happens to nucleosomes during DNA replication? J Biol Chem 280:12065–12068 CrossRefPubMedGoogle Scholar
  8. 8.
    Aparicio JG, Viggiani CJ, Gibson DG, Aparicio OM (2004) The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae. Mol Cell Biol 24:4769–4780 CrossRefPubMedGoogle Scholar
  9. 9.
    Baetz KK, Krogan NJ, Emili A, Greenblatt J, Hieter P (2004) The ctf13–30/CTF13 genomic haploinsufficiency modifier screen identifies the yeast chromatin remodeling complex RSC, which is required for the establishment of sister chromatid cohesion. Mol Cell Biol 24:1232–1244 CrossRefPubMedGoogle Scholar
  10. 10.
    Banting GS, Barak O, Ames TM, Burnham AC, Kardel MD, Cooch NS, Davidson CE, Godbout R, McDermid HE, Shiekhattar R (2005) CECR2, a protein involved in neurulation, forms a novel chromatin remodeling complex with SNF2L. Hum Mol Genet 14:513–524 CrossRefPubMedGoogle Scholar
  11. 11.
    Barak O, Lazzaro MA, Lane WS, Speicher DW, Picketts DJ, Shiekhattar R (2003) Isolation of human NURF: a regulator of Engrailed gene expression. Embo J 22:6089–6100 CrossRefPubMedGoogle Scholar
  12. 12.
    Becker PB (2005) Nucleosome remodelers on track. Nat Struct Mol Biol 12:732–733 CrossRefPubMedGoogle Scholar
  13. 13.
    Becker PB, Horz W (2002) ATP-dependent nucleosome remodeling. Annu Rev Biochem 71:247–273 CrossRefPubMedGoogle Scholar
  14. 14.
    Bell SP, Dutta A (2002) DNA replication in eukaryotic cells. Annu Rev Biochem 71:333–374 CrossRefPubMedGoogle Scholar
  15. 15.
    Belotserkovskaya R, Oh S, Bondarenko VA, Orphanides G, Studitsky VM, Reinberg D (2003) FACT facilitates transcription-dependent nucleosome alteration. Science 301:1090–1093 CrossRefPubMedGoogle Scholar
  16. 16.
    Belotserkovskaya R, Saunders A, Lis JT, Reinberg D (2004) Transcription through chromatin: understanding a complex FACT. Biochim Biophys Acta 1677:87–99 PubMedGoogle Scholar
  17. 17.
    Biswas D, Yu Y, Prall M, Formosa T, Stillman DJ (2005) The yeast FACT complex has a role in transcriptional initiation. Mol Cell Biol 25:5812–5822 CrossRefPubMedGoogle Scholar
  18. 18.
    Bochar DA, Savard J, Wang W, Lafleur DW, Moore P, Cote J, Shiekhattar R (2000) A family of chromatin remodeling factors related to Williams syndrome transcription factor. Proc Natl Acad Sci USA 97:1038–1043 CrossRefPubMedGoogle Scholar
  19. 19.
    Bozhenok L, Wade PA, Varga-Weisz P (2002) WSTF-ISWI chromatin remodeling complex targets heterochromatic replication foci. Embo J 21:2231–2241 CrossRefPubMedGoogle Scholar
  20. 20.
    Brewster NK, Johnston GC, Singer RA (1998) Characterization of the CP complex, an abundant dimer of Cdc68 and Pob3 proteins that regulates yeast transcriptional activation and chromatin repression. J Biol Chem 273:21972–21979 CrossRefPubMedGoogle Scholar
  21. 21.
    Chai B, Huang J, Cairns BR, Laurent BC (2005) Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes Dev 19:1656–1661 CrossRefPubMedGoogle Scholar
  22. 22.
    Citterio E, Van Den Boom V, Schnitzler G, Kanaar R, Bonte E, Kingston RE, Hoeijmakers JH, Vermeulen W (2000) ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor. Mol Cell Biol 20:7643–7653 CrossRefPubMedGoogle Scholar
  23. 23.
    Collins N, Poot RA, Kukimoto I, Garcia-Jimenez C, Dellaire G, Varga-Weisz PD (2002) An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nat Genet 32:627–632 CrossRefPubMedGoogle Scholar
  24. 24.
    Cosgrove MS, Wolberger C (2005) How does the histone code work? Biochem Cell Biol 83:468–476 Google Scholar
  25. 25.
    Cvetic C, Walter JC (2005) Eukaryotic origins of DNA replication: could you please be more specific? Semin Cell Dev Biol 16:343–353 CrossRefPubMedGoogle Scholar
  26. 26.
    Dirscherl SS, Krebs JE (2004) Functional diversity of ISWI complexes. Biochem Cell Biol 82:482–489 Google Scholar
  27. 27.
    Donaldson AD (2005) Shaping time: chromatin structure and the DNA replication programme. Trends Genet 21:444–449 CrossRefPubMedGoogle Scholar
  28. 28.
    Eberharter A, Becker PB (2004) ATP-dependent nucleosome remodelling: factors and functions. J Cell Sci 117:3707–3711 CrossRefPubMedGoogle Scholar
  29. 29.
    Ehrenhofer-Murray AE (2004) Chromatin dynamics at DNA replication, transcription and repair. Eur J Biochem 271:2335–2349 CrossRefPubMedGoogle Scholar
  30. 30.
    Eisen JA, Sweder KS, Hanawalt PC (1995) Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res 23:2715–2723 PubMedCrossRefGoogle Scholar
  31. 31.
    Flanagan JF, Peterson CL (1999) A role for the yeast SWI/SNF complex in DNA replication. Nucleic Acids Res 27:2022–2028 CrossRefPubMedGoogle Scholar
  32. 32.
    Formosa T, Eriksson P, Wittmeyer J, Ginn J, Yu Y, Stillman DJ (2001) Spt16-Pob3 and the HMG protein Nhp6 combine to form the nucleosome-binding factor SPN. Embo J 20:3506–3517 CrossRefPubMedGoogle Scholar
  33. 33.
    Fritsch O, Benvenuto G, Bowler C, Molinier J, Hohn B (2004) The INO80 protein controls homologous recombination in Arabidopsis thaliana. Mol Cell 16:479–485 CrossRefPubMedGoogle Scholar
  34. 34.
    Fyodorov DV, Blower MD, Karpen GH, Kadonaga JT (2004) Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo. Genes Dev 18:170–183 CrossRefPubMedGoogle Scholar
  35. 35.
    Goldmark JP, Fazzio TG, Estep PW, Church GM, Tsukiyama T (2000) The Isw2 chromatin remodeling complex represses early meiotic genes upon recruitment by Ume6p. Cell 103:423–433 CrossRefPubMedGoogle Scholar
  36. 36.
    Guschin D, Geiman TM, Kikyo N, Tremethick DJ, Wolffe AP, Wade PA (2000) Multiple ISWI ATPase complexes from Xenopus laevis. Functional conservation of an ACF/CHRAC homolog. J Biol Chem 275:35248–35255 CrossRefPubMedGoogle Scholar
  37. 37.
    Hakimi MA, Bochar DA, Schmiesing JA, Dong Y, Barak OG, Speicher DW, Yokomori K, Shiekhattar R (2002) A chromatin remodelling complex that loads cohesin onto human chromosomes. Nature 418:994–998 CrossRefPubMedGoogle Scholar
  38. 38.
    Hasan S, Stucki M, Hassa PO, Imhof R, Gehrig P, Hunziker P, Hubscher U, Hottiger MO (2001) Regulation of human flap endonuclease-1 activity by acetylation through the transcriptional coactivator p300. Mol Cell 7:1221–1231 CrossRefPubMedGoogle Scholar
  39. 39.
    Henikoff S, Ahmad K (2005) Assembly of Variant Histones into Chromatin. Annu Rev Cell Dev Biol 21:133–153 CrossRefPubMedGoogle Scholar
  40. 40.
    Huang J, Hsu JM, Laurent BC (2004) The RSC nucleosome-remodeling complex is required for Cohesin's association with chromosome arms. Mol Cell 13:739–750 CrossRefPubMedGoogle Scholar
  41. 41.
    Huang Y (2002) Transcriptional silencing in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Nucleic Acids Res 30:1465–1482 CrossRefPubMedGoogle Scholar
  42. 42.
    Iida T, Araki H (2004) Noncompetitive counteractions of DNA polymerase epsilon and ISW2/yCHRAC for epigenetic inheritance of telomere position effect in Saccharomyces cerevisiae. Mol Cell Biol 24:217–227 CrossRefPubMedGoogle Scholar
  43. 43.
    Ito T, Bulger M, Pazin MJ, Kobayashi R, Kadonaga JT (1997) ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90:145–155 CrossRefPubMedGoogle Scholar
  44. 44.
    Jaskelioff M, Van Komen S, Krebs JE, Sung P, Peterson CL (2003) Rad54p is a chromatin remodeling enzyme required for heteroduplex DNA joint formation with chromatin. J Biol Chem 278:9212–9218 CrossRefPubMedGoogle Scholar
  45. 45.
    Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98:285–294 CrossRefPubMedGoogle Scholar
  46. 46.
    Krogan NJ, Keogh MC, Datta N, Sawa C, Ryan OW, Ding H, Haw RA, Pootoolal J, Tong A, Canadien V, Richards DP, Wu X, Emili A, Hughes TR, Buratowski S, Greenblatt JF (2003) A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1. Mol Cell 12:1565–1576 CrossRefPubMedGoogle Scholar
  47. 47.
    Krogh BO, Symington LS (2004) Recombination proteins in yeast. Annu Rev Genet 38:233–271 CrossRefPubMedGoogle Scholar
  48. 48.
    Kusch T, Florens L, Macdonald WH, Swanson SK, Glaser RL, Yates JR III, Abmayr SM, Washburn MP, Workman JL (2004) Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science 306:2084–2087 CrossRefPubMedGoogle Scholar
  49. 49.
    Kuzminov A (2001) DNA replication meets genetic exchange: chromosomal damage and its repair by homologous recombination. Proc Natl Acad Sci USA 98:8461–8468 CrossRefPubMedGoogle Scholar
  50. 50.
    Langst G, Becker PB (2001) Nucleosome mobilization and positioning by ISWI-containing chromatin-remodeling factors. J Cell Sci 114:2561–2568 PubMedGoogle Scholar
  51. 51.
    Lazzaro MA, Picketts DJ (2001) Cloning and characterization of the murine Imitation Switch (ISWI) genes: differential expression patterns suggest distinct developmental roles for Snf2h and Snf2l. J Neurochem 77:1145–1156 CrossRefPubMedGoogle Scholar
  52. 52.
    LeRoy G, Loyola A, Lane WS, Reinberg D (2000) Purification and characterization of a human factor that assembles and remodels chromatin. J Biol Chem 275:14787–14790 CrossRefPubMedGoogle Scholar
  53. 53.
    LeRoy G, Orphanides G, Lane WS, Reinberg D (1998) Requirement of RSF and FACT for transcription of chromatin templates in vitro. Science 282:1900–1904 CrossRefPubMedGoogle Scholar
  54. 54.
    Loyola A, Almouzni G (2004) Histone chaperones, a supporting role in the limelight. Biochim Biophys Acta 1677:3–11 PubMedGoogle Scholar
  55. 55.
    Luger K, Hansen JC (2005) Nucleosome and chromatin fiber dynamics. Curr Opin Struct Biol 15:188–196 CrossRefPubMedGoogle Scholar
  56. 56.
    Lusser A, Kadonaga JT (2003) Chromatin remodeling by ATP-dependent molecular machines. Bioessays 25:1192–1200 CrossRefPubMedGoogle Scholar
  57. 57.
    MacCallum DE, Losada A, Kobayashi R, Hirano T (2002) ISWI remodeling complexes in Xenopus egg extracts: identification as major chromosomal components that are regulated by INCENP-aurora B. Mol Biol Cell 13:25–39 CrossRefPubMedGoogle Scholar
  58. 58.
    Maga G, Hubscher U (2003) Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J Cell Sci 116:3051–3060 CrossRefPubMedGoogle Scholar
  59. 59.
    McConnell AD, Gelbart ME, Tsukiyama T (2004) Histone fold protein Dls1p is required for Isw2-dependent chromatin remodeling in vivo. Mol Cell Biol 24:2605–2613 CrossRefPubMedGoogle Scholar
  60. 60.
    McNairn AJ, Gilbert DM (2003) Epigenomic replication: linking epigenetics to DNA replication. Bioessays 25:647–656 CrossRefPubMedGoogle Scholar
  61. 61.
    Meijsing SH, Ehrenhofer-Murray AE (2001) The silencing complex SAS-I links histone acetylation to the assembly of repressed chromatin by CAF-I and Asf1 in Saccharomyces cerevisiae. Genes Dev 15:3169–3182 CrossRefPubMedGoogle Scholar
  62. 62.
    Milutinovic S, Zhuang Q, Szyf M (2002) Proliferating cell nuclear antigen associates with histone deacetylase activity, integrating DNA replication and chromatin modification. J Biol Chem 277:20974–20978 CrossRefPubMedGoogle Scholar
  63. 63.
    Mizuguchi G, Shen X, Landry J, Wu WH, Sen S, Wu C (2004) ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303:343–348 CrossRefPubMedGoogle Scholar
  64. 64.
    Moore JD, Krebs JE (2004) Histone modifications and DNA double-strand break repair. Biochem Cell Biol 82:446–452 Google Scholar
  65. 65.
    Morrison AJ, Highland J, Krogan NJ, Arbel-Eden A, Greenblatt JF, Haber JE, Shen X (2004) INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119:767–775 CrossRefPubMedGoogle Scholar
  66. 66.
    Morrison AJ, Shen X (2005) DNA repair in the context of chromatin. Cell Cycle 4:568–571 PubMedCrossRefGoogle Scholar
  67. 67.
    O'Donnell AF, Brewster NK, Kurniawan J, Minard LV, Johnston GC, Singer RA (2004) Domain organization of the yeast histone chaperone FACT: the conserved N-terminal domain of FACT subunit Spt16 mediates recovery from replication stress. Nucleic Acids Res 32:5894–5906 CrossRefPubMedGoogle Scholar
  68. 68.
    Okuhara K, Ohta K, Seo H, Shioda M, Yamada T, Tanaka Y, Dohmae N, Seyama Y, Shibata T, Murofushi H (1999) A DNA unwinding factor involved in DNA replication in cell-free extracts of Xenopus eggs. Curr Biol 9:341–350 CrossRefPubMedGoogle Scholar
  69. 69.
    Orphanides G, LeRoy G, Chang CH, Luse DS, Reinberg D (1998) FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 92:105–116 CrossRefPubMedGoogle Scholar
  70. 70.
    Orphanides G, Wu WH, Lane WS, Hampsey M, Reinberg D (1999) The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature 400:284–288 CrossRefPubMedGoogle Scholar
  71. 71.
    Osada S, Sutton A, Muster N, Brown CE, Yates JR 3rd, Sternglanz R, Workman JL (2001) The yeast SAS (something about silencing) protein complex contains a MYST-type putative acetyltransferase and functions with chromatin assembly factor ASF1. Genes Dev 15:3155–3168 CrossRefPubMedGoogle Scholar
  72. 72.
    Peterson CL, Laniel MA (2004) Histones and histone modifications. Curr Biol 14:R546–R551 CrossRefPubMedGoogle Scholar
  73. 73.
    Poot RA, Bozhenok L, van den Berg DL, Hawkes N, Varga-Weisz PD (2005) Chromatin remodeling by WSTF-ISWI at the replication site: opening a window of opportunity for epigenetic inheritance? Cell Cycle 4:543–546 PubMedCrossRefGoogle Scholar
  74. 74.
    Poot RA, Bozhenok L, van den Berg DL, Steffensen S, Ferreira F, Grimaldi M, Gilbert N, Ferreira J, Varga-Weisz PD (2004) The Williams syndrome transcription factor interacts with PCNA to target chromatin remodelling by ISWI to replication foci. Nat Cell Biol 6:1236–1244 CrossRefPubMedGoogle Scholar
  75. 75.
    Poot RA, Dellaire G, Hulsmann BB, Grimaldi MA, Corona DF, Becker PB, Bickmore WA, Varga-Weisz PD (2000) HuCHRAC, a human ISWI chromatin remodelling complex contains hACF1 and two novel histone-fold proteins. Embo J 19:3377–3387 CrossRefPubMedGoogle Scholar
  76. 76.
    Rhoades AR, Ruone S, Formosa T (2004) Structural features of nucleosomes reorganized by yeast FACT and its HMG box component, Nhp6. Mol Cell Biol 24:3907–3917 CrossRefPubMedGoogle Scholar
  77. 77.
    Riedel CG, Gregan J, Gruber S, Nasmyth K (2004) Is chromatin remodeling required to build sister-chromatid cohesion? Trends Biochem Sci 29:389–392 CrossRefPubMedGoogle Scholar
  78. 78.
    Santoro R, Grummt I (2005) Epigenetic mechanism of rRNA gene silencing: temporal order of NoRC-mediated histone modification, chromatin remodeling, and DNA methylation. Mol Cell Biol 25:2539–2546 CrossRefPubMedGoogle Scholar
  79. 79.
    Schalch T, Duda S, Sargent DF, Richmond TJ (2005) X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436:138–141 CrossRefPubMedGoogle Scholar
  80. 80.
    Schlesinger MB, Formosa T (2000) POB3 is required for both transcription and replication in the yeast Saccharomyces cerevisiae. Genetics 155:1593–1606 Google Scholar
  81. 81.
    Seo H, Okuhara K, Kurumizaka H, Yamada T, Shibata T, Ohta K, Akiyama T, Murofushi H (2003) Incorporation of DUF/FACT into chromatin enhances the accessibility of nucleosomal DNA. Biochem Biophys Res Commun 303:8–13 CrossRefPubMedGoogle Scholar
  82. 82.
    Smirnova M, Van Komen S, Sung P, Klein HL (2004) Effects of tumor-associated mutations on Rad54 functions. J Biol Chem 279:24081–24088 CrossRefPubMedGoogle Scholar
  83. 83.
    Stopka T, Skoultchi AI (2003) The ISWI ATPase Snf2h is required for early mouse development. Proc Natl Acad Sci USA 100:14097–14102 CrossRefPubMedGoogle Scholar
  84. 84.
    Strohner R, Nemeth A, Jansa P, Hofmann-Rohrer U, Santoro R, Langst G, Grummt I (2001) NoRC— a novel member of mammalian ISWI-containing chromatin remodeling machines. Embo J 20:4892–4900 CrossRefPubMedGoogle Scholar
  85. 85.
    Suter B, Tong A, Chang M, Yu L, Brown GW, Boone C, Rine J (2004) The origin recognition complex links replication, sister chromatid cohesion and transcriptional silencing in Saccharomyces cerevisiae. Genetics 167:579–591 CrossRefGoogle Scholar
  86. 86.
    Tackett AJ, Dilworth DJ, Davey MJ, O'Donnell M, Aitchison JD, Rout MP, Chait BT (2005) Proteomic and genomic characterization of chromatin complexes at a boundary. J Cell Biol 169:35–47 CrossRefPubMedGoogle Scholar
  87. 87.
    Taddei A, Maison C, Roche D, Almouzni G (2001) Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases. Nat Cell Biol 3:114–120 CrossRefPubMedGoogle Scholar
  88. 88.
    Taddei A, Roche D, Sibarita JB, Turner BM, Almouzni G (1999) Duplication and maintenance of heterochromatin domains. J Cell Biol 147:1153–1166 CrossRefPubMedGoogle Scholar
  89. 89.
    Tan BC, Lee SC (2004) Nek9, a novel FACT-associated protein, modulates interphase progression. J Biol Chem 279:9321–9330 CrossRefPubMedGoogle Scholar
  90. 90.
    Tan TL, Kanaar R, Wyman C (2003) Rad54, a Jack of all trades in homologous recombination. DNA Repair (Amst) 2:787–794 CrossRefGoogle Scholar
  91. 91.
    Tsukiyama T, Palmer J, Landel CC, Shiloach J, Wu C (1999) Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae. Genes Dev 13:686–697 PubMedCrossRefGoogle Scholar
  92. 92.
    Tsukiyama T, Wu C (1995) Purification and properties of an ATP-dependent nucleosome remodeling factor. Cell 83:1011–1020 CrossRefPubMedGoogle Scholar
  93. 93.
    van Attikum H, Fritsch O, Hohn B, Gasser SM (2004) Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 119:777–788 CrossRefPubMedGoogle Scholar
  94. 94.
    van Attikum H, Gasser SM (2005) ATP-dependent chromatin remodeling and dna double-strand break repair. Cell Cycle 4:1011–1014 PubMedCrossRefGoogle Scholar
  95. 95.
    Varga-Weisz PD, Wilm M, Bonte E, Dumas K, Mann M, Becker PB (1997) Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388:598–602 CrossRefPubMedGoogle Scholar
  96. 96.
    Vary JC Jr, Gangaraju VK, Qin J, Landel CC, Kooperberg C, Bartholomew B, Tsukiyama T (2003) Yeast Isw1p forms two separable complexes in vivo. Mol Cell Biol 23:80–91 CrossRefPubMedGoogle Scholar
  97. 97.
    Vogelauer M, Rubbi L, Lucas I, Brewer BJ, Grunstein M (2002) Histone acetylation regulates the time of replication origin firing. Mol Cell 10:1223–1233 CrossRefPubMedGoogle Scholar
  98. 98.
    Walfridsson J, Bjerling P, Thalen M, Yoo EJ, Park SD, Ekwall K (2005) The CHD remodeling factor Hrp1 stimulates CENP-A loading to centromeres. Nucleic Acids Res 33:2868–2879 CrossRefPubMedGoogle Scholar
  99. 99.
    Wiren M, Silverstein RA, Sinha I, Walfridsson J, Lee HM, Laurenson P, Pillus L, Robyr D, Grunstein M, Ekwall K (2005) Genomewide analysis of nucleosome density histone acetylation and HDAC function in fission yeast. Embo J 24:2906–2918 CrossRefPubMedGoogle Scholar
  100. 100.
    Wittmeyer J, Joss L, Formosa T (1999) Spt16 and Pob3 of Saccharomyces cerevisiae form an essential, abundant heterodimer that is nuclear, chromatin-associated, and copurifies with DNA polymerase alpha. Biochemistry 38:8961–8971 CrossRefPubMedGoogle Scholar
  101. 101.
    Wu R, Terry AV, Singh PB, Gilbert DM (2005) Differential subnuclear localization and replication timing of histone H3 lysine 9 methylation states. Mol Biol Cell 16:2872–2881 CrossRefPubMedGoogle Scholar
  102. 102.
    Yamada T, Fischle W, Sugiyama T, Allis CD, Grewal SI (2005) The nucleation and maintenance of heterochromatin by a histone deacetylase in fission yeast. Mol Cell 20:173–185 CrossRefPubMedGoogle Scholar
  103. 103.
    Yamada T, Okuhara K, Iwamatsu A, Seo H, Ohta K, Shibata T, Murofushi H (2000) p97 ATPase, an ATPase involved in membrane fusion, interacts with DNA unwinding factor (DUF) that functions in DNA replication. FEBS Lett 466:287–291 CrossRefPubMedGoogle Scholar
  104. 104.
    Yasui D, Miyano M, Cai S, Varga-Weisz P, Kohwi-Shigematsu T (2002) SATB1 targets chromatin remodelling to regulate genes over long distances. Nature 419:641–645 CrossRefPubMedGoogle Scholar
  105. 105.
    Zhou J, Chau CM, Deng Z, Shiekhattar R, Spindler MP, Schepers A, Lieberman PM (2005) Cell cycle regulation of chromatin at an origin of DNA replication. Embo J 24:1406–1417 CrossRefPubMedGoogle Scholar
  106. 106.
    Zhou Y, Wang TS (2004) A coordinated temporal interplay of nucleosome reorganization factor, sister chromatin cohesion factor, and DNA polymerase alpha facilitates DNA replication. Mol Cell Biol 24:9568–9579 CrossRefPubMedGoogle Scholar

Authors and Affiliations

  1. 1.Babraham InstituteCambridgeUK

Personalised recommendations