Mechanisms for Nucleosome Movement by ATP-dependent Chromatin Remodeling Complexes

  • Anjanabha Saha
  • Jacqueline Wittmeyer
  • Bradley R. CairnsEmail author
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 41)


Chromatin remodeling complexes (remodelers) are a set of diverse multi-protein machines that reposition and restructure nucleosomes. Remodelers are specialized, containing unique proteins that assist in targeting, interaction with modified nucleosomes, and performing specific chromatin tasks. However, all remodelers contain an ATPase domain that is highly similar to known DNA translocases/helicases, suggesting that DNA translocation is a property common to all remodelers. Here we examine the different reactions they perform in vitro, focusing on the SWI/SNF and the ISWI complexes, and explore how DNA translocation might be utilized to execute various remodeling processes.


ATPase Domain Histone Chaperone Histone Octamer Twist Defect Nucleosomal Dyad 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Because of space restrictions, we apologize to those whose work could not be discussed. We thank Maggie Kasten for comments.


  1. 1.
    Adkins MW, Howar SR, Tyler JK (2004) Chromatin disassembly mediated by the histone chaperone Asf1 is essential for transcriptional activation of the yeast PHO5 and PHO8 genes. Mol Cell 14(5):657–666 CrossRefPubMedGoogle Scholar
  2. 2.
    Alexeev A, Mazin A, Kowalczykowski SC (2003) Rad54 protein possesses chromatin-remodeling activity stimulated by the Rad51-ssDNA nucleoprotein filament. Nat Struct Biol 10(3):182–186 CrossRefPubMedGoogle Scholar
  3. 3.
    Almer A et al. (1986) Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. Embo J 5(10):2689–2696 PubMedGoogle Scholar
  4. 4.
    Becker PB, Horz W (2002) ATP-dependent nucleosome remodeling. Annu Rev Biochem 71:247–273 CrossRefPubMedGoogle Scholar
  5. 5.
    Boeger H et al. (2004) Removal of promoter nucleosomes by disassembly rather than sliding in vivo. Mol Cell 14(5):667–673 CrossRefPubMedGoogle Scholar
  6. 6.
    Bowen NJ et al. (2004) Mi-2/NuRD: multiple complexes for many purposes. Biochim Biophys Acta 1677(1–3):52–57 PubMedGoogle Scholar
  7. 7.
    Brehm A et al. (2000) dMi-2 and ISWI chromatin remodelling factors have distinct nucleosome binding and mobilization properties. Embo J 19(16):4332–4341 CrossRefPubMedGoogle Scholar
  8. 8.
    Brower-Toland BD et al. (2002) Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA. Proc Natl Acad Sci USA 99(4):1960–1965 CrossRefPubMedGoogle Scholar
  9. 9.
    Cairns BR (1998) Chromatin remodeling machines: similar motors, ulterior motives. Trends Biochem Sci 23(1):20–25 CrossRefPubMedGoogle Scholar
  10. 10.
    Cairns BR (2005) Chromatin remodeling complexes: strength in diversity, precision through specialization. Curr Opin Genet Dev 15(2):185–190 CrossRefPubMedGoogle Scholar
  11. 11.
    Cairns BR et al. (1994) A multisubunit complex containing the SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, and SNF6 gene products isolated from yeast. Proc Natl Acad Sci USA 91(5):1950–1954 PubMedCrossRefGoogle Scholar
  12. 12.
    Cairns BR et al. (1996) RSC, an essential, abundant chromatin-remodeling complex. Cell 87(7):1249–1260 CrossRefPubMedGoogle Scholar
  13. 13.
    Chai B et al. (2005) Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes Dev 19(14):1656–1661 CrossRefPubMedGoogle Scholar
  14. 14.
    Clapier CR et al. (2001) Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI. Mol Cell Biol 21(3):875–883 CrossRefPubMedGoogle Scholar
  15. 15.
    Corey LL et al. (2003) Localized recruitment of a chromatin-remodeling activity by an activator in vivo drives transcriptional elongation. Genes Dev 17(11):1392–1401 CrossRefPubMedGoogle Scholar
  16. 16.
    Corona DF, Tamkun JW (2004) Multiple roles for ISWI in transcription, chromosome organization and DNA replication. Biochim Biophys Acta 1677(1–3):113–119 PubMedGoogle Scholar
  17. 17.
    Corona DF et al. (2002) Modulation of ISWI function by site-specific histone acetylation. EMBO Rep 3(3):242–247 CrossRefPubMedGoogle Scholar
  18. 18.
    Cote J, Peterson CL, Workman JL (1998) Perturbation of nucleosome core structure by the SWI/SNF complex persists after its detachment, enhancing subsequent transcription factor binding. Proc Natl Acad Sci USA 95(9):4947–4952 CrossRefPubMedGoogle Scholar
  19. 19.
    Cote J et al. (1994) Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265(5168):53–60 PubMedCrossRefGoogle Scholar
  20. 20.
    Dillingham MS, Wigley DB, Webb MR (2000) Demonstration of unidirectional single-stranded DNA translocation by PcrA helicase: measurement of step size and translocation speed. Biochemistry 39(1):205–212 CrossRefPubMedGoogle Scholar
  21. 21.
    Durr H et al. (2005) X-ray structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA. Cell 121(3):363–373 CrossRefPubMedGoogle Scholar
  22. 22.
    Eisen JA, Sweder KS, Hanawalt PC (1995) Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res 23(14):2715–2723 PubMedCrossRefGoogle Scholar
  23. 23.
    Fan HY et al. (2003) Distinct strategies to make nucleosomal DNA accessible. Mol Cell 11(5):1311–1322 CrossRefPubMedGoogle Scholar
  24. 24.
    Fitzgerald DJ et al. (2004) Reaction cycle of the yeast Isw2 chromatin remodeling complex. Embo J 23(19):3836–3843 CrossRefPubMedGoogle Scholar
  25. 25.
    Flaus A, Owen-Hughes T (2003a) Mechanisms for nucleosome mobilization. Biopolymers 68(4):563–578 CrossRefPubMedGoogle Scholar
  26. 26.
    Flaus A, Owen-Hughes T (2003b) Dynamic properties of nucleosomes during thermal and ATP-driven mobilization. Mol Cell Biol 23(21):7767–7779 CrossRefPubMedGoogle Scholar
  27. 27.
    Fyodorov DV, Kadonaga JT (2002) Dynamics of ATP-dependent chromatin assembly by ACF. Nature 418(6900):897–900 CrossRefPubMedGoogle Scholar
  28. 28.
    Gottesfeld JM, Luger K (2001) Energetics and affinity of the histone octamer for defined DNA sequences. Biochemistry 40(37):10927–10933 CrossRefPubMedGoogle Scholar
  29. 29.
    Grune T et al. (2003) Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI. Mol Cell 12(2):449–460 CrossRefPubMedGoogle Scholar
  30. 30.
    Guyon JR et al. (1999) Stable remodeling of tailless nucleosomes by the human SWI-SNF complex. Mol Cell Biol 19(3):2088–2097 PubMedGoogle Scholar
  31. 31.
    Hamiche A et al. (1999) ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF. Cell 97(7):833–842 CrossRefPubMedGoogle Scholar
  32. 32.
    Havas K et al. (2000) Generation of superhelical torsion by ATP-dependent chromatin remodeling activities. Cell 103(7):1133–1142 CrossRefPubMedGoogle Scholar
  33. 33.
    Henikoff S, Furuyama T, Ahmad K (2004) Histone variants, nucleosome assembly and epigenetic inheritance. Trends Genet 20(7):320–326 CrossRefPubMedGoogle Scholar
  34. 34.
    Huang J, Hsu JM, Laurent BC (2004) The RSC nucleosome-remodeling complex is required for Cohesin's association with chromosome arms. Mol Cell 13(5):739–750 CrossRefPubMedGoogle Scholar
  35. 35.
    Imbalzano AN, Schnitzler GR, Kingston RE (1996) Nucleosome disruption by human SWI/SNF is maintained in the absence of continued ATP hydrolysis. J Biol Chem 271(34):20726–20733 CrossRefPubMedGoogle Scholar
  36. 36.
    Ito T et al. (1997) ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90(1):145–155 CrossRefPubMedGoogle Scholar
  37. 37.
    Janscak P, Bickle TA (2000) DNA supercoiling during ATP-dependent DNA translocation by the type I restriction enzyme EcoAI. J Mol Biol 295(4):1089–1099 CrossRefPubMedGoogle Scholar
  38. 38.
    Jaskelioff M et al. (2003) Rad54p is a chromatin remodeling enzyme required for heteroduplex DNA joint formation with chromatin. J Biol Chem 278(11):9212–9218 CrossRefPubMedGoogle Scholar
  39. 39.
    Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080 CrossRefPubMedGoogle Scholar
  40. 40.
    Kagalwala MN et al. (2004) Topography of the ISW2-nucleosome complex: insights into nucleosome spacing and chromatin remodeling. Embo J 23(10):2092–2104 CrossRefPubMedGoogle Scholar
  41. 41.
    Kassabov SR et al. (2003) SWI/SNF unwraps, slides, and rewraps the nucleosome. Mol Cell 11(2):391–403 CrossRefPubMedGoogle Scholar
  42. 42.
    Kim JL et al. (1998) Hepatitis C virus NS3 RNA helicase domain with a bound oligonucleotide: the crystal structure provides insights into the mode of unwinding. Structure 6(1):89–100 CrossRefPubMedGoogle Scholar
  43. 43.
    Korber P, Horz W (2004) SWRred not shaken; mixing the histones. Cell 117(1):5–7 CrossRefPubMedGoogle Scholar
  44. 44.
    Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98(3):285–294 CrossRefPubMedGoogle Scholar
  45. 45.
    Kwon H et al. (1994) Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature 370(6489):477–481 CrossRefPubMedGoogle Scholar
  46. 46.
    Langst G, Becker PB (2001) ISWI induces nucleosome sliding on nicked DNA. Mol Cell 8(5):1085–1092 CrossRefPubMedGoogle Scholar
  47. 47.
    Langst G et al. (1999) Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Cell 97(7):843–852 CrossRefPubMedGoogle Scholar
  48. 48.
    Laurent BC, Yang X, Carlson M (1992) An essential Saccharomyces cerevisiae gene homologous to SNF2 encodes a helicase-related protein in a new family. Mol Cell Biol 12(4):1893–1902 PubMedGoogle Scholar
  49. 49.
    Lee CK et al. (2004) Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat Genet 36(8):900–905 CrossRefPubMedGoogle Scholar
  50. 50.
    Leschziner AE et al. (2005) Structural studies of the human PBAF chromatin-remodeling complex. Structure (Camb) 13(2):267–275 CrossRefGoogle Scholar
  51. 51.
    Li G, Widom J (2004) Nucleosomes facilitate their own invasion. Nat Struct Mol Biol 11(8):763–769 CrossRefPubMedGoogle Scholar
  52. 52.
    Li G et al. (2005) Rapid spontaneous accessibility of nucleosomal DNA. Nat Struct Mol Biol 12(1):46–53 CrossRefPubMedGoogle Scholar
  53. 53.
    Lorch Y, Davis B, Kornberg RD (2005) Chromatin remodeling by DNA bending, not twisting. Proc Natl Acad Sci USA 102(5):1329–1332 CrossRefPubMedGoogle Scholar
  54. 54.
    Lorch Y, Zhang M, Kornberg RD (1999) Histone octamer transfer by a chromatin-remodeling complex. Cell 96(3):389–392 CrossRefPubMedGoogle Scholar
  55. 55.
    Lorch Y et al. (1998) Activated RSC-nucleosome complex and persistently altered form of the nucleosome. Cell 94(1):29–34 CrossRefPubMedGoogle Scholar
  56. 56.
    Luger K et al. (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389(6648):251–260 CrossRefPubMedGoogle Scholar
  57. 57.
    Martens JA, Winston F (2003) Recent advances in understanding chromatin remodeling by Swi/Snf complexes. Curr Opin Genet Dev 13(2):136–142 CrossRefPubMedGoogle Scholar
  58. 58.
    Mellor J, Morillon A (2004) ISWI complexes in Saccharomyces cerevisiae. Biochim Biophys Acta 1677(1–3):100–112 PubMedGoogle Scholar
  59. 59.
    Moshkin YM et al. (2002) Histone chaperone ASF1 cooperates with the Brahma chromatin-remodelling machinery. Genes Dev 16(20):2621–2626 CrossRefPubMedGoogle Scholar
  60. 60.
    Murray NE (2000) Type I restriction systems: sophisticated molecular machines. Microbiol Mol Biol Rev 64(2):412–434 CrossRefPubMedGoogle Scholar
  61. 61.
    Narlikar GJ, Fan HY, Kingston RE (2002) Cooperation between complexes that regulate chromatin structure and transcription. Cell 108(4):475–487 CrossRefPubMedGoogle Scholar
  62. 62.
    Narlikar GJ, Phelan ML, Kingston RE (2001) Generation and interconversion of multiple distinct nucleosomal states as a mechanism for catalyzing chromatin fluidity. Mol Cell 8(6):1219–1230 CrossRefPubMedGoogle Scholar
  63. 63.
    Owen-Hughes T (2003) Colworth memorial lecture. Pathways for remodelling chromatin. Biochem Soc Trans 31(Part 5):893–905 Google Scholar
  64. 64.
    Peterson CL, Dingwall A, Scott MP (1994) Five SWI/SNF gene products are components of a large multisubunit complex required for transcriptional enhancement. Proc Natl Acad Sci USA 91(8):2905–2908 PubMedCrossRefGoogle Scholar
  65. 65.
    Phelan ML, Schnitzler GR, Kingston RE (2000) Octamer transfer and creation of stably remodeled nucleosomes by human SWI-SNF and its isolated ATPases. Mol Cell Biol 20(17):6380–6389 CrossRefPubMedGoogle Scholar
  66. 66.
    Reinke H, Horz W (2003) Histones are first hyperacetylated and then lose contact with the activated PHO5 promoter. Mol Cell 11(6):1599–1607 CrossRefPubMedGoogle Scholar
  67. 67.
    Richmond TJ, Davey CA (2003) The structure of DNA in the nucleosome core. Nature 423(6936):145–150 CrossRefPubMedGoogle Scholar
  68. 68.
    Saha A, Wittmeyer J, Cairns BR (2002) Chromatin remodeling by RSC involves ATP-dependent DNA translocation. Genes Dev 16(16):2120–2134 CrossRefPubMedGoogle Scholar
  69. 69.
    Saha A, Wittmeyer J, Cairns BR (2005) Chromatin remodeling through directional DNA translocation from an internal nucleosomal site. Nat Struct Mol Biol 12(9):747–755 CrossRefPubMedGoogle Scholar
  70. 70.
    Schnitzler G, Sif S, Kingston RE (1998) Human SWI/SNF interconverts a nucleosome between its base state and a stable remodeled state. Cell 94(1):17–27 CrossRefPubMedGoogle Scholar
  71. 71.
    Schwanbeck R, Xiao H, Wu C (2004) Spatial contacts and nucleosome step movements induced by the NURF chromatin remodeling complex. J Biol Chem 279(38):39933–39941 CrossRefPubMedGoogle Scholar
  72. 72.
    Shen X et al. (2000) A chromatin remodelling complex involved in transcription and DNA processing. Nature 406(6795):541–544 CrossRefPubMedGoogle Scholar
  73. 73.
    Singleton MR, Wigley DB (2002) Modularity and specialization in superfamily 1 and 2 helicases. J Bacteriol 184(7):1819–1826 CrossRefPubMedGoogle Scholar
  74. 74.
    Singleton MR, Scaife S, Wigley DB (2001) Structural analysis of DNA replication fork reversal by RecG. Cell 107(1):79–89 CrossRefPubMedGoogle Scholar
  75. 75.
    Soultanas P et al. (2000) Uncoupling DNA translocation and helicase activity in PcrA: direct evidence for an active mechanism. Embo J (14):3799–3810 Google Scholar
  76. 76.
    Strohner R et al. (2005) A ‘loop recapture’ mechanism for ACF-dependent nucleosome remodeling. Nat Struct Mol Biol 12(8):683–690 CrossRefPubMedGoogle Scholar
  77. 77.
    Suto RK et al. (2003) Crystal structures of nucleosome core particles in complex with minor groove DNA-binding ligands. J Mol Biol 326(2):371–380 CrossRefPubMedGoogle Scholar
  78. 78.
    Thoma NH et al. (2005) Structure of the SWI2/SNF2 chromatin-remodeling domain of eukaryotic Rad54. Nat Struct Mol Biol 12(4):350–356 CrossRefPubMedGoogle Scholar
  79. 79.
    Tsukiyama T, Wu C (1995) Purification and properties of an ATP-dependent nucleosome remodeling factor. Cell 83(6):1011–1020 CrossRefPubMedGoogle Scholar
  80. 80.
    van Attikum H, Gasser SM (2005) The histone code at DNA breaks: a guide to repair? Nat Rev Mol Cell Biol 6(10):757–765 CrossRefPubMedGoogle Scholar
  81. 81.
    Varga-Weisz PD et al. (1997) Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388(6642):598–602 CrossRefPubMedGoogle Scholar
  82. 82.
    Velankar SS et al. (1999) Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell 97(1):75–84 CrossRefPubMedGoogle Scholar
  83. 83.
    Whitehouse I et al. (1999) Nucleosome mobilization catalysed by the yeast SWI/SNF complex. Nature 400(6746):784–787 CrossRefPubMedGoogle Scholar
  84. 84.
    Whitehouse I et al. (2003) Evidence for DNA translocation by the ISWI chromatin-remodeling enzyme. Mol Cell Biol 23(6):1935–1945 CrossRefPubMedGoogle Scholar
  85. 85.
    Widom J (1998) Structure, dynamics, and function of chromatin in vitro. Annu Rev Biophys Biomol Struct 27:285–327 CrossRefPubMedGoogle Scholar
  86. 86.
    Widom J (2001) Role of DNA sequence in nucleosome stability and dynamics. Q Rev Biophys 34(3):269–324 PubMedCrossRefGoogle Scholar
  87. 87.
    Winston F, Carlson M (1992) Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet 8(11):387–391 CrossRefPubMedGoogle Scholar
  88. 88.
    Wu J, Grunstein M (2000) 25 years after the nucleosome model: chromatin modifications. Trends Biochem Sci 25(12):619–623 CrossRefPubMedGoogle Scholar

Authors and Affiliations

  • Anjanabha Saha
    • 1
  • Jacqueline Wittmeyer
    • 1
  • Bradley R. Cairns
    • 1
    Email author
  1. 1.Department of Oncological Sciences and Howard Hughes Medical InstituteHuntsman Cancer Institute, University of Utah School of MedicineSalt Lake CityUSA

Personalised recommendations