Control of Cell Proliferation and Growth by Myc Proteins

  • Sandra Bernard
  • Martin EilersEmail author
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 42)


Myc proteins act as signal transducers that alter cell proliferation in dependence on signals from the extracellular environment. In normal cells, the expression of MYC genes is therefore under tight control by growth factor dependent signals. The enormous interest in the function of these proteins is motivated by the observation that the close control of MYC expression is disrupted in a large percentage of human tumors, leading to deregulated expression of Myc proteins. A large body of evidence shows that this deregulation is a major driving force of human tumorigenesis; in cells with deregulated Myc, proliferation often takes place in the complete absence of external stimuli. We will discuss current models to understand Myc function and also potential avenues to selectively interfere with the proliferation of Myc-transformed cells.


Werner Syndrome Synthetic Lethal Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Work in the authors' laboratory is supported by the Deutsche Forschungsgemeinschaft, the European Community through the Framework 6 program, the Thyssen- and the Sander-Stiftung, AICR and the Deutsche Krebshilfe.


  1. 1.
    Adhikary S, Marinoni F, Hock A, Hulleman E, Popov N, Beier R, Bernard S, Quarto M, Capra M, Goettig S, Kogel U, Scheffner M, Helin K, Eilers M (2005) The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation. Cell 123:409–421 PubMedCrossRefGoogle Scholar
  2. 2.
    Arabi A, Wu S, Ridderstrale K, Bierhoff H, Shiue C, Fatyol K, Fahlen S, Hydbring P, Soderberg O, Grummt I, Larsson LG, Wright AP (2005) c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nat Cell Biol 7:303–310 PubMedCrossRefGoogle Scholar
  3. 3.
    Baena E, Gandarillas A, Vallespinos M, Zanet J, Bachs O, Redondo C, Fabregat I, Martinez AC, de Alboran IM (2005) c-Myc regulates cell size and ploidy but is not essential for postnatal proliferation in liver. Proc Natl Acad Sci USA 102:7286–7291 PubMedCrossRefGoogle Scholar
  4. 4.
    Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K, Guldberg P, Sehested M, Nesland JM, Lukas C, Orntoft T, Lukas J, Bartek J (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434:864–870 PubMedCrossRefGoogle Scholar
  5. 5.
    Baudino TA, Maclean KH, Brennan J, Parganas E, Yang C, Aslanian A, Lees JA, Sherr CJ, Roussel MF, Cleveland JL (2003) Myc-mediated proliferation and lymphomagenesis, but not apoptosis, are compromised by E2f1 loss. Mol Cell 11:905–914 PubMedCrossRefGoogle Scholar
  6. 6.
    Beier R, Burgin A, Kiermaier A, Fero M, Karsunky H, Saffrich R, Moroy T, Ansorge W, Roberts J, Eilers M (2000) Induction of cyclin E-cdk2 kinase activity, E2F-dependent transcription and cell growth by myc are genetically separable events. EMBO J 19:5813–5823 PubMedCrossRefGoogle Scholar
  7. 7.
    Bellosta P, Hulf T, Balla Diop S, Usseglio F, Pradel J, Aragnol D, Gallant P (2005) Myc interacts genetically with Tip48/Reptin and Tip49/Pontin to control growth and proliferation during Drosophila development. Proc Natl Acad Sci USA 102:11799–11804 PubMedCrossRefGoogle Scholar
  8. 8.
    Bettess MD, Dubois N, Murphy MJ, Dubey C, Roger C, Robine S, Trumpp A (2005) c-Myc is required for the formation of intestinal crypts but dispensable for homeostasis of the adult intestinal epithelium. Mol Cell Biol 25:7868–7878 PubMedCrossRefGoogle Scholar
  9. 9.
    Boon K, Caron HN, van Asperen R, Valentijn L, Hermus MC, van Sluis P, Roobeek I, Weis I, Voute PA, Schwab M, Versteeg R (2001) N-myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis. EMBO J 20:1383–1393 PubMedCrossRefGoogle Scholar
  10. 10.
    Bouchard C, Dittrich O, Kiermaier A, Dohmann K, Menkel A, Eilers M, Luscher B (2001) Regulation of cyclin D2 gene expression by the Myc/Max/Mad network: Myc-dependent TRRAP recruitment and histone acetylation at the cyclin D2 promoter. Genes Dev 15:2042–2047 PubMedCrossRefGoogle Scholar
  11. 11.
    Bouchard C, Marquardt J, Bras A, Medema RH, Eilers M (2004) Myc-induced proliferation and transformation require Akt-mediated phosphorylation of FoxO proteins. EMBO J 23:2830–2840 PubMedCrossRefGoogle Scholar
  12. 12.
    Bouchard C, Thieke K, Maier A, Saffrich R, Hanley-Hyde J, Ansorge W, Reed S, Sicinski P, Bartek J, Eilers M (1999) Direct induction of cyclin D2 by Myc contributes to cell cycle progression and sequestration of p27. EMBO J 18:5321–5333 PubMedCrossRefGoogle Scholar
  13. 13.
    Chen D, Kon N, Li M, Zhang W, Qin J, Gu W (2005) ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell 121:1071–1083 PubMedCrossRefGoogle Scholar
  14. 14.
    Collins NL, Reginato MJ, Paulus JK, Sgroi DC, Labaer J, Brugge JS (2005) G1/S cell cycle arrest provides anoikis resistance through Erk-mediated Bim suppression. Mol Cell Biol 25:5282–5291 PubMedCrossRefGoogle Scholar
  15. 15.
    de Alboran IM, O'Hagan RC, Gartner F, Malynn B, Davidson L, Rickert R, Rajewsky K, DePinho RA, Alt FW (2001) Analysis of C-MYC function in normal cells via conditional gene-targeted mutation. Immunity 14:45–55 PubMedCrossRefGoogle Scholar
  16. 16.
    Frank SR, Parisi T, Taubert S, Fernandez P, Fuchs M, Chan HM, Livingston DM, Amati B (2003) MYC recruits the TIP60 histone acetyltransferase complex to chromatin. EMBO Rep 4:575–580 PubMedCrossRefGoogle Scholar
  17. 17.
    Gandarillas A, Watt FM (1997) c-Myc promotes differentiation of human epidermal stem cells. Genes Dev 11:2869–2882 PubMedCrossRefGoogle Scholar
  18. 18.
    Gebhardt A, Frye M, Herold S, Benitah SA, Braun K, Samans B, Watt F, Elsässer HP, Eilers M (2005) Myc regulates keratinocyte adhesion and differentiation via complex formation with Miz1. J Cell Biol 172:139–149 CrossRefGoogle Scholar
  19. 19.
    Gomez-Roman N, Grandori C, Eisenman RN, White RJ (2003) Direct activation of RNA polymerase III transcription by c-Myc. Nature 421:290–294 PubMedCrossRefGoogle Scholar
  20. 20.
    Grandori C, Gomez-Roman N, Felton-Edkins ZA, Ngouenet C, Galloway DA, Eisenman RN, White RJ (2005) c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nat Cell Biol 7:311–318 PubMedCrossRefGoogle Scholar
  21. 21.
    Grandori C, Wu KJ, Fernandez P, Ngouenet C, Grim J, Clurman BE, Moser MJ, Oshima J, Russell DW, Swisshelm K, Frank S, Amati B, Dalla-Favera R, Monnat RJ Jr (2003) Werner syndrome protein limits MYC-induced cellular senescence. Genes Dev 17:1569–1574 PubMedCrossRefGoogle Scholar
  22. 22.
    Guo Y, Cleveland JL, O'Brien TG (2005) Haploinsufficiency for odc modifies mouse skin tumor susceptibility. Cancer Res 65:1146–1149 PubMedCrossRefGoogle Scholar
  23. 23.
    Hemann MT, Bric A, Teruya-Feldstein J, Herbst A, Nilsson JA, Cordon-Cardo C, Cleveland JL, Tansey WP, Lowe SW (2005) Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature 436:807–811 PubMedCrossRefGoogle Scholar
  24. 24.
    Hermeking H, Eick D (1994) Myc-induced apoptosis is mediated by p53 protein. Science 265:2091–2093 PubMedCrossRefGoogle Scholar
  25. 25.
    Hermeking H, Rago C, Schuhmacher M, Li Q, Barrett JF, Obaya AJ, O'Connell BC, Mateyak MK, Tam W, Kohlhuber F, Dang CV, Sedivy JM, Eick D, Vogelstein B, Kinzler KW (2000) Identification of CDK4 as a target of c-MYC. Proc Natl Acad Sci USA 97:2229–2234 PubMedCrossRefGoogle Scholar
  26. 26.
    Hernando E, Nahle Z, Juan G, Diaz-Rodriguez E, Alaminos M, Hemann M, Michel L, Mittal V, Gerald W, Benezra R, Lowe SW, Cordon-Cardo C (2004) Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature 430:797–802 PubMedCrossRefGoogle Scholar
  27. 27.
    Herold S, Wanzel M, Beuger V, Frohme C, Beul D, Hillukkala T, Syvaoja J, Saluz HP, Hänel F, Eilers M (2002) Negative regulation of the mammalian UV response by Myc through association with Miz-1. Mol Cell 10:509–521 PubMedCrossRefGoogle Scholar
  28. 28.
    Jansen-Dürr P, Meichle A, Steiner P, Pagano M, Finke K, Botz J, Wessbecher J, Draetta G, Eilers M (1993) Differential modulation of cyclin gene expression by MYC. Proc Natl Acad Sci USA 90:3685–3689 PubMedCrossRefGoogle Scholar
  29. 29.
    Karlsson A, Deb-Basu D, Cherry A, Turner S, Ford J, Felsher DW (2003) Defective double-strand DNA break repair and chromosomal translocations by MYC overexpression. Proc Natl Acad Sci USA 100:9974–9979 PubMedCrossRefGoogle Scholar
  30. 30.
    Kenney AM, Cole MD, Rowitch DH (2003) Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development 130:15–28 PubMedCrossRefGoogle Scholar
  31. 31.
    Kim SY, Herbst A, Tworkowski KA, Salghetti SE, Tansey WP (2003) Skp2 regulates myc protein stability and activity. Mol Cell 11:1177–1188 PubMedCrossRefGoogle Scholar
  32. 32.
    Knoepfler PS, Cheng PF, Eisenman RN (2002) N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev 16:2699–2712 PubMedCrossRefGoogle Scholar
  33. 33.
    Kowalczyk A, Filipkowski RK, Rylski M, Wilczynski GM, Konopacki FA, Jaworski J, Ciemerych MA, Sicinski P, Kaczmarek L (2004) The critical role of cyclin D2 in adult neurogenesis. J Cell Biol 167:209–213 PubMedCrossRefGoogle Scholar
  34. 34.
    Kozar K, Ciemerych MA, Rebel VI, Shigematsu H, Zagozdzon A, Sicinska E, Geng Y, Yu Q, Bhattacharya S, Bronson RT, Akashi K, Sicinski P (2004) Mouse development and cell proliferation in the absence of D-cyclins. Cell 118:477–491 PubMedCrossRefGoogle Scholar
  35. 35.
    Leone G, DeGregori J, Sears R, Jakoi L, Nevins JR (1997) Myc and Ras collaborate in inducing accumulation of active cyclin E/Cdk2 and E2F. Nature 387:422–426 PubMedCrossRefGoogle Scholar
  36. 36.
    Leone G, Sears R, Huang E, Rempel R, Nuckolls F, Park C-H, Giangrande P, Wu L, Saavedra HI, Field SJ, Thompson MA, Yang H, Fujiwara Y, Greenberg ME, Orkin S, Smith C, Nevins JR (2001) Myc requires distinct E2F activities to induce S phase and apoptosis. Mol Cell 8:105–113 PubMedCrossRefGoogle Scholar
  37. 37.
    Lindstrom MS, Wiman KG (2003) Myc and E2F1 induce p53 through p14ARF-independent mechanisms in human fibroblasts. Oncogene 22:4993–5005 PubMedCrossRefGoogle Scholar
  38. 38.
    Mateyak MK, Obaya AJ, Sedivy JM (1999) c-Myc regulates cyclin D-cdk4 and -cdk6 activity but affects cell cycle progression at multiple independent points. Mol Cell Biol 19:4672–4683 PubMedGoogle Scholar
  39. 39.
    Mateyak MK, Obaya AJ, Adachi S, Sedivy JM (1997) Phenotypes of c-Myc-deficient rat fibroblasts isolated by targeted homologous recombination. Cell Growth Differ 8:1039–1048 PubMedGoogle Scholar
  40. 40.
    McMahon SB, Wood MA, Cole MD (2000) The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Mol Cell Biol 20:556–562 PubMedCrossRefGoogle Scholar
  41. 41.
    McMahon SB, van Buskirk HA, Dugan KA, Copeland TD, Cole MD (1998) The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 94:363–374 PubMedCrossRefGoogle Scholar
  42. 42.
    Miliani de Marval PL, Macias E, Rounbehler R, Sicinski P, Kiyokawa H, Johnson DG, Conti CJ, Rodriguez-Puebla ML (2004) Lack of cyclin-dependent kinase 4 inhibits c-myc tumorigenic activities in epithelial tissues. Mol Cell Biol 24:7538–7547 CrossRefGoogle Scholar
  43. 43.
    Minsky N, Oren M (2004) The RING domain of Mdm2 mediates histone ubiquitylation and transcriptional repression. Mol Cell 16:631–639 PubMedCrossRefGoogle Scholar
  44. 44.
    Nikiforov MA, Chandriani S, Park J, Kotenko I, Matheos D, Johnsson A, McMahon SB, Cole MD (2002) TRRAP-dependent and TRRAP-independent transcriptional activation by Myc family oncoproteins. Mol Cell Biol 22:5054–5063 PubMedCrossRefGoogle Scholar
  45. 45.
    O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843 PubMedCrossRefGoogle Scholar
  46. 46.
    Oliver TG, Grasfeder LL, Carroll AL, Kaiser C, Gillingham CL, Lin SM, Wickramasinghe R, Scott MP, Wechsler-Reya RJ (2003) Transcriptional profiling of the Sonic hedgehog response: a critical role for N-myc in proliferation of neuronal precursors. Proc Natl Acad Sci USA 100:7331–7336 PubMedCrossRefGoogle Scholar
  47. 47.
    Osterhout DJ, Wolven A, Wolf RM, Resh MD, Chao MV (1999) Morphological differentiation of oligodendrocytes requires activation of Fyn tyrosine kinase. J Cell Biol 145:1209–1218 PubMedCrossRefGoogle Scholar
  48. 48.
    Pelengaris S, Khan M, Evan GI (2002) Suppression of myc-induced apoptosis in beta cells exposes multiple oncogenic properties of myc and triggers carcinogenic progression. Cell 109:321–334 PubMedCrossRefGoogle Scholar
  49. 49.
    Perez-Roger I, Kim S-H, Griffiths B, Sewing A, Land H (1999) Cyclins D1 and D2 mediate Myc-induced proliferation via sequestration of p27Kip1 and p21Cip1. EMBO J 18:5310–5320 PubMedCrossRefGoogle Scholar
  50. 50.
    Phan RT, Saito M, Basso K, Niu H, Dalla-Favera R (2005) BCL6 interacts with the transcription factor Miz-1 to suppress the cyclin-dependent kinase inhibitor p21 and cell cycle arrest in germinal center B cells. Nat Immunol 6:1054–1060 PubMedCrossRefGoogle Scholar
  51. 51.
    Poortinga G, Hannan KM, Snelling H, Walkley CR, Jenkins A, Sharkey K, Wall M, Brandenburger Y, Palatsides M, Pearson RB, McArthur GA, Hannan RD (2004) MAD1 and c-MYC regulate UBF and rDNA transcription during granulocyte differentiation. EMBO J 23:3325–3335 PubMedCrossRefGoogle Scholar
  52. 52.
    Qi Y, Gregory MA, Li Z, Brousal JP, West K, Hann SR (2004) p19ARF directly and differentially controls the functions of c-Myc independently of p53. Nature 431:712–717 PubMedCrossRefGoogle Scholar
  53. 53.
    Rottmann S, Wang Y, Nasoff M, Deveraux QL, Quon KC (2005) A TRAIL receptor-dependent synthetic lethal relationship between MYC activation and GSK3beta/FBW7 loss of function. Proc Natl Acad Sci USA 102:15195–15200 PubMedCrossRefGoogle Scholar
  54. 54.
    Rudolph B, Zwicker J, Saffrich R, Henglein B, Müller R, Ansorge W, Eilers M (1996) Activation of cyclin dependent kinases by Myc mediates transcriptional activation of cyclin A, but not apoptosis. EMBO J 15:3065–3076 PubMedGoogle Scholar
  55. 55.
    Schneider A, Peukert K, Hänel F, Eilers M (1997) Association with the zinc finger protein Miz-1 defines a novel pathway for gene regulation by Myc. Curr Top Microbiol Immunol 224:137–149 PubMedGoogle Scholar
  56. 56.
    Seoane J, Le HV, Massague J (2002) Myc suppression of the p21Cip1 Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419:729–734 PubMedCrossRefGoogle Scholar
  57. 57.
    Seoane J, Pouponnot C, Staller P, Schader M, Eilers M, Massague J (2001) TGFbeta influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat Cell Biol 3:400–408 PubMedCrossRefGoogle Scholar
  58. 58.
    Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, Dalla-Favera R, Dang CV (1997) c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci USA 94:6658–6663 PubMedCrossRefGoogle Scholar
  59. 59.
    Soucek L, Evan G (2002) Myc – is this the oncogene from hell? Cancer Cell 1:406–408 PubMedCrossRefGoogle Scholar
  60. 60.
    Staller P, Peukert K, Kiermaier A, Seoane J, Lukas J, Karsunky H, Moroy T, Bartek J, Massague J, Hanel F, Eilers M (2001) Repression of p15INK4b expression by Myc through association with Miz-1. Nat Cell Biol 3:392–399 PubMedCrossRefGoogle Scholar
  61. 61.
    Steiner P, Philipp A, Lukas J, Godden-Kent D, Pagano M, Mittnacht S, Bartek J, Eilers M (1995) Identification of a Myc-dependent step during the formation of active G1 cyclin/cdk complexes. EMBO J 14:4814–4826 PubMedGoogle Scholar
  62. 62.
    Trumpp A, Refaeli Y, Oskarsson T, Gasser S, Murphy M, Martin GR, Bishop JM (2001) c-Myc regulates mammalian body size by controlling cell number but not cell size. Nature 414:768–773 PubMedCrossRefGoogle Scholar
  63. 63.
    Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM, Wahl GM (2002) c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function. A mechanism for oncogene-induced genetic instability. Mol Cell 9:1031–1044 PubMedCrossRefGoogle Scholar
  64. 64.
    Vlach J, Hennecke S, Alevizopoulos K, Conti D, Amati B (1996) Growth arrest by the cyclin-dependent kinase inhibitor p27Kip1 is abrogated by c-Myc. EMBO J 15:6595–6604 PubMedGoogle Scholar
  65. 65.
    von der Lehr N, Johansson S, Wu S, Bahram F, Castell A, Cetinkaya C, Hydbring P, Weidung I, Nakayama K, Nakayama KI, Soderberg O, Kerppola TK, Larsson LG (2003) The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol Cell 11:1189–1200 PubMedCrossRefGoogle Scholar
  66. 66.
    Walker W, Zhou ZQ, Ota S, Wynshaw-Boris A, Hurlin PJ (2005) Mnt-Max to Myc-Max complex switching regulates cell cycle entry. J Cell Biol 169:405–413 PubMedCrossRefGoogle Scholar
  67. 67.
    Wang Y, Engels IH, Knee DA, Nasoff M, Deveraux QL, Quon KC (2004) Synthetic lethal targeting of MYC by activation of the DR5 death receptor pathway. Cancer Cell 5:501–512 PubMedCrossRefGoogle Scholar
  68. 68.
    Wanzel M, Herold S, Eilers M (2003) Transcriptional repression by Myc. Trends Cell Biol 13:146–150 PubMedCrossRefGoogle Scholar
  69. 69.
    Welcker M, Orian A, Grim JA, Eisenman RN, Clurman BE (2004a) A nucleolar isoform of the Fbw7 ubiquitin ligase regulates c-Myc and cell size. Curr Biol 14:1852–1857 PubMedCrossRefGoogle Scholar
  70. 70.
    Welcker M, Orian A, Jin J, Grim JA, Harper JW, Eisenman RN, Clurman BE (2004b) The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA 101:9085–9090 PubMedCrossRefGoogle Scholar
  71. 71.
    Wilson A, Murphy MJ, Oskarsson T, Kaloulis K, Bettess MD, Oser GM, Pasche AC, Knabenhans C, Macdonald HR, Trumpp A (2004) c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev 18:2747–2763 PubMedCrossRefGoogle Scholar
  72. 72.
    Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H, Ishida N, Okumura F, Nakayama K, Nakayama KI (2004) Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J 23:2116–2125 PubMedCrossRefGoogle Scholar
  73. 73.
    Yang W, Shen J, Wu M, Arsura M, FitzGerald M, Suldan Z, Kim DW, Hofmann CS, Pianetti S, Romieu-Mourez R, Freedman LP, Sonenshein GE (2001) Repression of transcription of the p27Kip1 cyclin-dependent kinase inhibitor gene by c-Myc. Oncogene 20:1688–1702 PubMedCrossRefGoogle Scholar
  74. 74.
    Yu Q, Ciemerych MA, Sicinski P (2005) Ras and Myc can drive oncogenic cell proliferation through individual D-cyclins. Oncogene 24:7114–7119 PubMedCrossRefGoogle Scholar
  75. 75.
    Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL, Sherr CJ, Roussel MF (1998) Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 12:2424–2433 PubMedCrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Institute for Molecular Biology and Tumor ResearchUniversity of MarburgMarburgGermany

Personalised recommendations