Cell Cycle Regulation in Mammalian Germ Cells

  • Changanamkandath Rajesh
  • Douglas L. PittmanEmail author
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 42)


Meiosis is a unique form of cellular division by which a diploid cell produces genetically distinct haploid gametes. Initiation and regulation of mammalian meiosis differs between the sexes. In females, meiosis is initiated during embryo development and arrested shortly after birth during prophase I. In males, spermatogonial stem cells initiate meiosis at puberty and proceed through gametogenesis with no cell cycle arrest. Mouse genes required for early meiotic cell cycle events are being identified by comparative analysis with other eukaryotic systems, by virtue of gene knockout technology and by mouse mutagenesis screens for reproductive defects. This review focuses on mouse reproductive biology and describes the available mouse mutants with defects in the early meiotic cell cycle and prophase I regulatory events. These research tools will permit rapid advances in such medically relevant research areas as infertility, embryo lethality and developmental abnormalities.


Germ Cell Cell Cycle Regulation Synaptonemal Complex Primordial Germ Cell Spermatogonial Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We gratefully acknowledge support from the March of Dimes Birth Defects Foundation, a Helen and Harold McMaster Endowment, and the American Cancer Society.


  1. 1.
    Agoulnik AI, Lu B, Zhu Q, Truong C, Ty MT, Arango N, Chada KK, Bishop CE (2002) A novel gene, Pog, is necessary for primordial germ cell proliferation in the mouse and underlies the germ cell deficient mutation, gcd. Hum Mol Genet 11:3047–3053 PubMedCrossRefGoogle Scholar
  2. 2.
    Anderson R, Copeland TK, Scholer H, Heasman J, Wylie C (2000) The onset of germ cell migration in the mouse embryo. Mech Dev 91:61–68 PubMedCrossRefGoogle Scholar
  3. 3.
    Ashley T, Walpita D, de Rooij DG (2001) Localization of two mammalian cyclin dependent kinases during mammalian meiosis. J Cell Sci 114:685–693 PubMedGoogle Scholar
  4. 4.
    Baker SM, Bronner CE, Zhang L, Plug AW, Robatzek M, Warren G, Elliott EA, Yu J, Ashley T, Arnheim N, Flavell RA, Liskay RM (1995) Male mice defective in the DNA mismatch repair gene PMS2 exhibit abnormal chromosome synapsis in meiosis. Cell 82:309–319 PubMedCrossRefGoogle Scholar
  5. 5.
    Baker SM, Plug AW, Prolla TA, Bronner CE, Harris AC, Yao X, Christie DM, Monell C, Arnheim N, Bradley A, Ashley T, Liskay RM (1996) Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nat Genet 13:336–342 PubMedCrossRefGoogle Scholar
  6. 6.
    Bannister LA, Reinholdt LG, Munroe RJ, Schimenti JC (2004) Positional cloning and characterization of mouse mei8, a disrupted allele of the meiotic cohesin Rec8. Genesis 40:184–194 CrossRefGoogle Scholar
  7. 7.
    Barlow C, Hirotsune S, Paylor R, Liyanage M, Eckhaus M, Collins F, Shiloh Y, Crawley JN, Ried T, Tagle D, Wynshaw-Boris A (1996) Atm-deficient mice: A paradigm of ataxia telangiectasia. Cell 86:159–171 PubMedCrossRefGoogle Scholar
  8. 8.
    Baudat F, Manova K, Yuen JP, Jasin M, Keeney S (2000) Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo 11. Mol Cell 6:989–998 PubMedCrossRefGoogle Scholar
  9. 9.
    Beck AR, Miller IJ, Anderson P, Streuli M (1998) RNA-binding protein TIAR is essential for primordial germ cell development. Proc Natl Acad Sci USA 95:2331–2336 PubMedCrossRefGoogle Scholar
  10. 10.
    Bergeron L, Perez GI, Macdonald G, Shi L, Sun Y, Jurisicova A, Varmuza S, Latham KE, Flaws JA, Salter JC, Hara H, Moskowitz MA, Li E, Greenberg A, Tilly JL, Yuan J (1998) Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev 12:1304–1314 PubMedGoogle Scholar
  11. 11.
    Berthet C, Aleem E, Coppola V, Tessarollo L, Kaldis P (2003) Cdk2 knockout mice are viable. Curr Biol 13:1775–1785 PubMedCrossRefGoogle Scholar
  12. 12.
    Beumer TL, Kiyokawa H, Roepers-Gajadien HL, van den Bos LA, Lock TM, Gademan IS, Rutgers DH, Koff A, de Rooij DG (1999) Regulatory role of p27kip1 in the mouse and human testis. Endocrinology 140:1834–1840 PubMedCrossRefGoogle Scholar
  13. 13.
    Blendy JA, Kaestner KH, Weinbauer GF, Nieschlag E, Schutz G (1996) Severe impairment of spermatogenesis in mice lacking the CREM gene. Nature 380:162–165 PubMedCrossRefGoogle Scholar
  14. 14.
    Castrillon DH, Miao L, Kollipara R, Horner JW, DePinho RA (2003) Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science 301:215–218 PubMedCrossRefGoogle Scholar
  15. 15.
    Celeste A, Petersen S, Romanienko PJ, Fernandez-Capetillo O, Chen HT, Sedelnikova OA, Reina-San-Martin B, Coppola V, Meffre E, Difilippantonio MJ, Redon C, Pilch DR, Olaru A, Eckhaus M, Camerini-Otero RD, Tessarollo L, Livak F, Manova K, Bonner WM, Nussenzweig MC, Nussenzweig A (2002) Genomic instability in mice lacking histone H2AX. Science 296:922–927 PubMedCrossRefGoogle Scholar
  16. 16.
    Chang C, Chen YT, Yeh SD, Xu Q, Wang RS, Guillou F, Lardy H, Yeh S (2004) Infertility with defective spermatogenesis and hypotestosteronemia in male mice lacking the androgen receptor in Sertoli cells. Proc Natl Acad Sci USA 101:6876–6881 PubMedCrossRefGoogle Scholar
  17. 17.
    Chang H, Matzuk MM (2001) Smad5 is required for mouse primordial germ cell development. Mech Dev 104:61–67 PubMedCrossRefGoogle Scholar
  18. 18.
    Choi T, Aoki F, Mori M, Yamashita M, Nagahama Y, Kohmoto K (1991) Activation of p34cdc2 protein kinase activity in meiotic and mitotic cell cycles in mouse oocytes and embryos. Development 113:789–795 PubMedGoogle Scholar
  19. 19.
    Chung SS, Cuzin F, Rassoulzadegan M, Wolgemuth DJ (2004) Primary spermatocyte-specific Cre recombinase activity in transgenic mice. Transgenic Res 13:289–294 PubMedCrossRefGoogle Scholar
  20. 20.
    Colledge WH, Carlton MB, Udy GB, Evans MJ (1994) Disruption of c-mos causes parthenogenetic development of unfertilized mouse eggs. Nature 370:65–68 PubMedCrossRefGoogle Scholar
  21. 21.
    Crackower MA, Kolas NK, Noguchi J, Sarao R, Kikuchi K, Kaneko H, Kobayashi E, Kawai Y, Kozieradzki I, Landers R, Mo R, Hui CC, Nieves E, Cohen PE, Osborne LR, Wada T, Kunieda T, Moens PB, Penninger JM (2003) Essential role of Fkbp6 in male fertility and homologous chromosome pairing in meiosis. Science 300:1291–1295 PubMedCrossRefGoogle Scholar
  22. 22.
    Critchlow HM, Payne A, Griffin DK (2004) Genes and proteins involved in the control of meiosis. Cytogenet Genome Res 105:4–10 PubMedCrossRefGoogle Scholar
  23. 23.
    Cunto FD, Imarisio S, Camera P, Boitani C, Altruda F, Silengo L (2002) Essential role of citron kinase in cytokinesis of spermatogenic precursors. J Cell Sci 115:4819–4826 PubMedCrossRefGoogle Scholar
  24. 24.
    de Rooij DG, de Boer P (2003) Specific arrests of spermatogenesis in genetically modified and mutant mice. Cytogenet Genome Res 103:267–276 PubMedCrossRefGoogle Scholar
  25. 25.
    de Vries FA, de Boer E, van den Bosch M, Baarends WM, Ooms M, Yuan L, Liu JG, van Zeeland AA, Heyting C, Pastink A (2005) Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation. Genes Dev 19:1376–1389 PubMedCrossRefGoogle Scholar
  26. 26.
    Deng W, Lin H (2002) Miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2:819–830 PubMedCrossRefGoogle Scholar
  27. 27.
    Di Giacomo M, Barchi M, Baudat F, Edelmann W, Keeney S, Jasin M (2005) Distinct DNA-damage-dependent and -independent responses drive the loss of oocytes in recombination-defective mouse mutants. Proc Natl Acad Sci USA 102:737–742 PubMedCrossRefGoogle Scholar
  28. 28.
    Dickins RA, Frew IJ, House CM, O'Bryan MK, Holloway AJ, Haviv I, Traficante N, de Kretser DM, Bowtell DD (2002) The ubiquitin ligase component Siah1a is required for completion of meiosis I in male mice. Mol Cell Biol 22:2294–2303 PubMedCrossRefGoogle Scholar
  29. 29.
    Dix DJ, Allen JW, Collins BW, Mori C, Nakamura N, Poorman-Allen P, Goulding EH, Eddy EM (1996) Targeted gene disruption of Hsp70–2 results in failed meiosis, germ cell apoptosis, and male infertility. Proc Natl Acad Sci USA 93:3264–3268 PubMedCrossRefGoogle Scholar
  30. 30.
    Edelmann W, Cohen PE, Kane M, Lau K, Morrow B, Bennett S, Umar A, Kunkel T, Cattoretti G, Chaganti R, Pollard JW, Kolodner RD, Kucherlapati R (1996) Meiotic pachytene arrest in MLH1-deficient mice. Cell 85:1125–1134 PubMedCrossRefGoogle Scholar
  31. 31.
    Engebrecht J (2003) Cell signaling in yeast sporulation. Biochem Biophys Res Commun 306:325–328 PubMedCrossRefGoogle Scholar
  32. 32.
    Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E, Polyak K, Tsai LH, Broudy V, Perlmutter RM, Kaushansky K, Roberts JM (1996) A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27Kip1-deficient mice. Cell 85:733–744 PubMedCrossRefGoogle Scholar
  33. 33.
    Freiman RN, Albright SR, Zheng S, Sha WC, Hammer RE, Tjian R (2001) Requirement of tissue-selective TBP-associated factor TAFII105 in ovarian development. Science 293:2084–2087 PubMedCrossRefGoogle Scholar
  34. 34.
    Gadelle D, Filee J, Buhler C, Forterre P (2003) Phylogenomics of type II DNA topoisomerases. Bioessays 25:232–242 PubMedCrossRefGoogle Scholar
  35. 35.
    Ganoth D, Bornstein G, Ko TK, Larsen B, Tyers M, Pagano M, Hershko A (2001) The cell-cycle regulatory protein Cks1 is required for SCFSkp2-mediated ubiquitinylation of p27. Nat Cell Biol 3:321–324 PubMedCrossRefGoogle Scholar
  36. 36.
    Geng Y, Yu Q, Sicinska E, Das M, Schneider JE, Bhattacharya S, Rideout WM, Bronson RT, Gardner H, Sicinski P (2003) Cyclin E ablation in the mouse. Cell 114:431–443 PubMedCrossRefGoogle Scholar
  37. 37.
    Guardavaccaro D, Kudo Y, Boulaire J, Barchi M, Busino L, Donzelli M, Margottin-Goguet F, Jackson PK, Yamasaki L, Pagano M (2003) Control of meiotic and mitotic progression by the F box protein beta-Trcp1 in vivo. Dev Cell 4:799–812 PubMedCrossRefGoogle Scholar
  38. 38.
    Handel MA (1987) Genetic control of spermatogenesis in mice. Results Probl Cell Differ 15:1–62 PubMedGoogle Scholar
  39. 39.
    Hassold T, Hunt P (2001) To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2:280–291 CrossRefGoogle Scholar
  40. 40.
    Hassold T, Sherman S (2000) Down syndrome: genetic recombination and the origin of the extra chromosome 21. Clin Genet 57:95–100 PubMedCrossRefGoogle Scholar
  41. 41.
    Heikinheimo O, Gibbons WE (1998) The molecular mechanisms of oocyte maturation and early embryonic development are unveiling new insights into reproductive medicine. Mol Hum Reprod 4:745–756 PubMedCrossRefGoogle Scholar
  42. 42.
    Heyting C, Dietrich AJ (1991) Meiotic chromosome preparation and protein labeling. Methods Cell Biol 35:177–202 Google Scholar
  43. 43.
    Honarpour N, Du C, Richardson JA, Hammer RE, Wang X, Herz J (2000) Adult Apaf-1-deficient mice exhibit male infertility. Dev Biol 218:248–258 PubMedCrossRefGoogle Scholar
  44. 44.
    Hsia KT, Millar MR, King S, Selfridge J, Redhead NJ, Melton DW, Saunders PT (2003) DNA repair gene Ercc1 is essential for normal spermatogenesis and oogenesis and for functional integrity of germ cell DNA in the mouse. Development 130:369–378 PubMedCrossRefGoogle Scholar
  45. 45.
    Huang EJ, Manova K, Packer AI, Sanchez S, Bachvarova RF, Besmer P (1993) The murine steel panda mutation affects kit ligand expression and growth of early ovarian follicles. Dev Biol 157:100–109 PubMedCrossRefGoogle Scholar
  46. 46.
    Hubner K, Fuhrmann G, Christenson LK, Kehler J, Reinbold R, De La Fuente R, Wood J, Strauss JF 3rd, Boiani M, Scholer HR (2003) Derivation of oocytes from mouse embryonic stem cells. Science 300:1251–1256 PubMedCrossRefGoogle Scholar
  47. 47.
    Igakura T, Kadomatsu K, Kaname T, Muramatsu H, Fan QW, Miyauchi T, Toyama Y, Kuno N, Yuasa S, Takahashi M, Senda T, Taguchi O, Yamamura K, Arimura K, Muramatsu T (1998) A null mutation in basigin, an immunoglobulin superfamily member, indicates its important roles in peri-implantation development and spermatogenesis. Dev Biol 194:152–165 PubMedCrossRefGoogle Scholar
  48. 48.
    Johnson J, Canning J, Kaneko T, Pru JK, Tilly JL (2004) Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature 428:145–150 PubMedCrossRefGoogle Scholar
  49. 49.
    Judis L, Chan ER, Schwartz S, Seftel A, Hassold T (2004) Meiosis I arrest and azoospermia in an infertile male explained by failure of formation of a component of the synaptonemal complex. Fertil Steril 81:205–209 PubMedCrossRefGoogle Scholar
  50. 50.
    Juneja SC, Barr KJ, Enders GC, Kidder GM (1999) Defects in the germ line and gonads of mice lacking connexin43. Biol Reprod 60:1263–1270 PubMedCrossRefGoogle Scholar
  51. 51.
    Kang J, Bronson RT, Xu Y (2002) Targeted disruption of NBS1 reveals its roles in mouse development and DNA repair. EMBO J 21:1447–1455 PubMedCrossRefGoogle Scholar
  52. 52.
    Keeney S, Baudat F, Angeles M, Zhou ZH, Copeland NG, Jenkins NA, Manova K, Jasin M (1999) A mouse homolog of the Saccharomyces Cerevisiae meiotic recombination DNA transesterase Spo11p. Genomics 61:170–182 PubMedCrossRefGoogle Scholar
  53. 53.
    Kneitz B, Cohen PE, Avdievich E, Zhu L, Kane MF, Hou H Jr, Kolodner RD, Kucherlapati R, Pollard JW, Edelmann W (2000) MutS homolog 4 localization to meiotic chromosomes is required for chromosome pairing during meiosis in male and female mice. Genes Dev 14:1085–1097 PubMedGoogle Scholar
  54. 54.
    Kolas NK, Cohen PE (2004) Novel and diverse functions of the DNA mismatch repair family in mammalian meiosis and recombination. Cytogenet Genome Res 107:216–231 PubMedCrossRefGoogle Scholar
  55. 55.
    Kuroda M, Sok J, Webb L, Baechtold H, Urano F, Yin Y, Chung P, de Rooij DG, Akhmedov A, Ashley T, Ron D (2000) Male sterility and enhanced radiation sensitivity in TLS-/- mice. EMBO J 19:453–462 PubMedCrossRefGoogle Scholar
  56. 56.
    Libby BJ, De La Fuente R, O'Brien MJ, Wigglesworth K, Cobb J, Inselman A, Eaker S, Handel MA, Eppig JJ, Schimenti JC (2002) The mouse meiotic mutation mei1 disrupts chromosome synapsis with sexually dimorphic consequences for meiotic progression. Dev Biol 242:174–187 PubMedCrossRefGoogle Scholar
  57. 57.
    Libby BJ, Reinholdt LG, Schimenti JC (2003) Positional cloning and characterization of Mei1, a vertebrate-specific gene required for normal meiotic chromosome synapsis in mice. Proc Natl Acad Sci USA 100:15706–15711 PubMedCrossRefGoogle Scholar
  58. 58.
    Lincoln AJ, Wickramasinghe D, Stein P, Schultz RM, Palko ME, De Miguel MP, Tessarollo L, Donovan PJ (2002) Cdc25b phosphatase is required for resumption of meiosis during oocyte maturation. Nat Genet 30:446–449 PubMedCrossRefGoogle Scholar
  59. 59.
    Liu D, Liao C, Wolgemuth DJ (2000) A role for cyclin A1 in the activation of MPF and G2-Mtransition during meiosis of male germ cells in mice. Dev Biol 224:388–400 PubMedCrossRefGoogle Scholar
  60. 60.
    Liu D, Matzuk MM, Sung WK, Guo Q, Wang P, Wolgemuth DJ (1998) Cyclin A1 is required for meiosis in the male mouse. Nat Genet 20:377–380 PubMedCrossRefGoogle Scholar
  61. 61.
    Martianov I, Fimia GM, Dierich A, Parvinen M, Sassone-Corsi P, Davidson I (2001) Late arrest of spermiogenesis and germ cell apoptosis in mice lacking the TBP-like TLF/TRF2 gene. Mol Cell 7:509–515 PubMedCrossRefGoogle Scholar
  62. 62.
    Masui Y, Markert CL (1971) Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J Exp Zool 177:129–145 PubMedCrossRefGoogle Scholar
  63. 63.
    Mazeyrat S, Saut N, Grigoriev V, Mahadevaiah SK, Ojarikre OA, Rattigan A, Bishop C, Eicher EM, Mitchell MJ, Burgoyne PS (2001) A Y-encoded subunit of the translation initiation factor Eif2 is essential for mouse spermatogenesis. Nat Genet 29:49–53 PubMedCrossRefGoogle Scholar
  64. 64.
    McLaren A (2003) Primordial germ cells in the mouse. Dev Biol 262:1–15 PubMedCrossRefGoogle Scholar
  65. 65.
    Mintz B, Russell ES (1957) Gene-induced embryological modifications of primordial germ cells in the mouse. J Exp Zool 134:207–237 PubMedCrossRefGoogle Scholar
  66. 66.
    Miyamoto T, Hasuike S, Yogev L, Maduro MR, Ishikawa M, Westphal H, Lamb DJ (2003) Azoospermia in patients heterozygous for a mutation in SYCP3. Lancet 362:1714–1719 PubMedCrossRefGoogle Scholar
  67. 67.
    Moens PB, Chen DJ, Shen Z, Kolas N, Tarsounas M, Heng HH, Spyropoulos B (1997) Rad51 immunocytology in rat and mouse spermatocytes and oocytes. Chromosoma 106:207–215 PubMedCrossRefGoogle Scholar
  68. 68.
    Moons DS, Jirawatnotai S, Tsutsui T, Franks R, Parlow AF, Hales DB, Gibori G, Fazleabas AT, Kiyokawa H (2002) Intact follicular maturation and defective luteal function in mice deficient for cyclin-dependent kinase-4. Endocrinology 143:647–654 PubMedCrossRefGoogle Scholar
  69. 69.
    Moreno S, Nurse P (1990) Substrates for p34cdc2: In vivo veritas? Cell 61:549–551 PubMedCrossRefGoogle Scholar
  70. 70.
    Nagy A (2003) Manipulating the mouse embryo: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York Google Scholar
  71. 71.
    Naz RK, Rajesh C (2005a) Gene knockouts that cause female infertility: search for novel contraceptive targets. Front Biosci 10:2447–2459 Google Scholar
  72. 72.
    Naz RK, Rajesh P (2005b) Novel testis/sperm-specific contraceptive targets identified using gene knockout studies. Front Biosci 10:2430–2446 Google Scholar
  73. 73.
    Nojimak H (2004) G1 and S-phase checkpoints, chromosome instability and cancer. In: Schonthal AH (ed) Checkpoint controls and cancer. Humana Press, New Jersey USA, p 3–49 Google Scholar
  74. 74.
    Ortega S, Prieto I, Odajima J, Martin A, Dubus P, Sotillo R, Barbero JL, Malumbres M, Barbacid M (2003) Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat Genet 35:25–31 PubMedCrossRefGoogle Scholar
  75. 75.
    Page AW, Orr-Weaver TL (1997) Stopping and starting the meiotic cell cycle. Curr Opin Genet Dev 7:23–31 PubMedCrossRefGoogle Scholar
  76. 76.
    Page SL, Hawley RS (2004) The genetics and molecular biology of the synaptonemal complex. Annu Rev Cell Dev Biol 20:525–558 PubMedCrossRefGoogle Scholar
  77. 77.
    Parisi T, Beck AR, Rougier N, McNeil T, Lucian L, Werb Z, Amati B (2003) Cyclins E1 and E2 are required for endoreplication in placental trophoblast giant cells. EMBO J 22:4794–4803 PubMedCrossRefGoogle Scholar
  78. 78.
    Pines J (1999) Four-dimensional control of the cell cycle. Nat Cell Biol 1:E73–79 PubMedCrossRefGoogle Scholar
  79. 79.
    Pines J, Hunter T (1989) Isolation of a human cyclin cDNA: evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2. Cell 58:833–846 PubMedCrossRefGoogle Scholar
  80. 80.
    Pittman DL, Cobb J, Schimenti KJ, Wilson LA, Cooper DM, Brignull E, Handel MA, Schimenti JC (1998) Meiotic prophase arrest with failure of chromosome synapsis in mice deficient for Dmc1, a germline-specific RecA homolog. Mol Cell 1:697–705 PubMedCrossRefGoogle Scholar
  81. 81.
    Plug AW, Xu J, Reddy G, Golub EI, Ashley T (1996) Presynaptic association of Rad51 protein with selected sites in meiotic chromatin. Proc Natl Acad Sci USA 93:5920–5924 PubMedCrossRefGoogle Scholar
  82. 82.
    Prawitt D, Brixel L, Spangenberg C, Eshkind L, Heck R, Oesch F, Zabel B, Bockamp E (2004) RNAi knock-down mice: an emerging technology for post-genomic functional genetics. Cytogenet Genome Res 105:412–421 PubMedCrossRefGoogle Scholar
  83. 83.
    Ratts VS, Flaws JA, Kolp R, Sorenson CM, Tilly JL (1995) Ablation of bcl-2 gene expression decreases the numbers of oocytes and primordial follicles established in the post-natal female mouse gonad. Endocrinology 136:3665–3668 PubMedCrossRefGoogle Scholar
  84. 84.
    Reinholdt L, Ashley T, Schimenti J, Shima N (2004) Forward genetic screens for meiotic and mitotic recombination-defective mutants in mice. Methods Mol Biol 262:87–107 PubMedGoogle Scholar
  85. 85.
    Reinholdt LG, Schimenti JC (2005) Mei1 is epistatic to Dmc1 during mouse meiosis. Chromosoma 114:127–134 PubMedCrossRefGoogle Scholar
  86. 86.
    Romanienko PJ, Camerini-Otero RD (2000) The mouse Spo11 gene is required for meiotic chromosome synapsis. Mol Cell 6:975–987 PubMedCrossRefGoogle Scholar
  87. 87.
    Ross AJ, Waymire KG, Moss JE, Parlow AF, Skinner MK, Russell LD, MacGregor GR (1998) Testicular degeneration in Bclw-deficient mice. Nat Genet 18:251–256 PubMedCrossRefGoogle Scholar
  88. 88.
    Rucker EB 3rd, Dierisseau P, Wagner KU, Garrett L, Wynshaw-Boris A, Flaws JA, Hennighausen L (2000) Bcl-x and Bax regulate mouse primordial germ cell survival and apoptosis during embryogenesis. Mol Endocrinol 14:1038–1052 PubMedCrossRefGoogle Scholar
  89. 89.
    Ruggiu M, Speed R, Taggart M, McKay SJ, Kilanowski F, Saunders P, Dorin J, Cooke HJ (1997) The mouse textitDazla gene encodes a cytoplasmic protein essential for gametogenesis. Nature 389:73–77 PubMedCrossRefGoogle Scholar
  90. 90.
    Russell LD (1990) Histological and histopathological evaluation of the testis. Cache River Press, Clearwater, Fl, xiv, p 286 Google Scholar
  91. 91.
    Schrans-Stassen BH, Saunders PT, Cooke HJ, de Rooij DG (2001) Nature of the spermatogenic arrest in Dazl –/– mice. Biol Reprod 65:771–776 PubMedCrossRefGoogle Scholar
  92. 92.
    Sharan SK, Pyle A, Coppola V, Babus J, Swaminathan S, Benedict J, Swing D, Martin BK, Tessarollo L, Evans JP, Flaws JA, Handel MA (2004) BRCA2 deficiency in mice leads to meiotic impairment and infertility. Development 131:131–142 PubMedCrossRefGoogle Scholar
  93. 93.
    Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512 PubMedGoogle Scholar
  94. 94.
    Sicinski P, Donaher JL, Geng Y, Parker SB, Gardner H, Park MY, Robker RL, Richards JS, McGinnis LK, Biggers JD, Eppig JJ, Bronson RT, Elledge SJ, Weinberg RA (1996) Cyclin D2 is an FSH-responsive gene involved in gonadal cell proliferation and oncogenesis. Nature 384:470–474 PubMedCrossRefGoogle Scholar
  95. 95.
    Simon AM, Goodenough DA, Li E, Paul DL (1997) Female infertility in mice lacking connexin 37. Nature 385:525–529 PubMedCrossRefGoogle Scholar
  96. 96.
    Spruck C, Strohmaier H, Watson M, Smith AP, Ryan A, Krek TW, Reed SI (2001) A CDK-independent function of mammalian Cks1: targeting of SCFSkp2 to the CDK inhibitor p27Kip1. Mol Cell 7:639–650 PubMedCrossRefGoogle Scholar
  97. 97.
    Spruck CH, de Miguel MP, Smith AP, Ryan A, Stein P, Schultz RM, Lincoln AJ, Donovan PJ, Reed SI (2003) Requirement of Cks2 for the first metaphase/anaphase transition of mammalian meiosis. Science 300:647–650 PubMedCrossRefGoogle Scholar
  98. 98.
    Sun F, Kozak G, Scott S, Trpkov K, Ko E, Mikhaail-Philips M, Bestor TH, Moens P, Martin RH (2004) Meiotic defects in a man with non-obstructive azoospermia: case report. Hum Reprod 19:1770–1773 PubMedCrossRefGoogle Scholar
  99. 99.
    Surani MA (2004) Stem cells: how to make eggs and sperm. Nature 427:106–107 PubMedCrossRefGoogle Scholar
  100. 100.
    Tay J, Richter JD (2001) Germ cell differentiation and synaptonemal complex formation are disrupted in CPEB knockout mice. Dev Cell 1:201–213 PubMedCrossRefGoogle Scholar
  101. 101.
    Tourtellotte WG, Nagarajan R, Auyeung A, Mueller C, Milbrandt J (1999) Infertility associated with incomplete spermatogenic arrest and oligozoospermia in Egr4-deficient mice. Development 126:5061–5071 PubMedGoogle Scholar
  102. 102.
    Toyama Y, Maekawa M, Kadomatsu K, Miyauchi T, Muramatsu T, Yuasa S (1999) Histological characterization of defective spermatogenesis in mice lacking the basigin gene. Anat Histol Embryol 28:205–213 PubMedCrossRefGoogle Scholar
  103. 103.
    Tremblay KD, Dunn NR, Robertson EJ (2001) Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation. Development 128:3609–3621 PubMedGoogle Scholar
  104. 104.
    Tsutsui T, Hesabi B, Moons DS, Pandolfi PP, Hansel KS, Koff A, Kiyokawa H (1999) Targeted disruption of CDK4 delays cell cycle entry with enhanced p27Kip1 activity. Mol Cell Biol 19:7011–7019 PubMedGoogle Scholar
  105. 105.
    Ward JO, Reinholdt LG, Hartford SA, Wilson LA, Munroe RJ, Schimenti KJ, Libby BJ, O'Brien M, Pendola JK, Eppig J, Schimenti JC (2003) Toward the genetics of mammalian reproduction: induction and mapping of gametogenesis mutants in mice. Biol Reprod 69:1615–1625 PubMedCrossRefGoogle Scholar
  106. 106.
    Wilson ZA, Yang C (2004) Plant gametogenesis: conservation and contrasts in development. Reproduction 128:483–492 PubMedCrossRefGoogle Scholar
  107. 107.
    Wolgemuth DJ (2003) Insights into regulation of the mammalian cell cycle from studies on spermatogenesis using genetic approaches in animal models. Cytogenet Genome Res 103:256–266 PubMedCrossRefGoogle Scholar
  108. 108.
    Wolgemuth DJ, Lele KM, Jobanputra V, Salazar G (2004) The A-type cyclins and the meiotic cell cycle in mammalian male germ cells. Int J Androl 27:192–199 PubMedCrossRefGoogle Scholar
  109. 109.
    Xu X, Aprelikova O, Moens P, Deng CX, Furth PA (2003) Impaired meiotic DNA-damage repair and lack of crossing-over during spermatogenesis in BRCA1 full-length isoform deficient mice. Development 130:2001–2012 PubMedCrossRefGoogle Scholar
  110. 110.
    Yan C, Wang P, DeMayo J, DeMayo FJ, Elvin JA, Carino C, Prasad SV, Skinner SS, Dunbar BS, Dube JL, Celeste AJ, Matzuk MM (2001) Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol Endocrinol 15:854–866 PubMedCrossRefGoogle Scholar
  111. 111.
    Yoshida K, Kondoh G, Matsuda Y, Habu T, Nishimune Y, Morita T (1998) The mouse RecA-like gene Dmc1 is required for homologous chromosome synapsis during meiosis. Mol Cell 1:707–718 PubMedCrossRefGoogle Scholar
  112. 112.
    Yu RN, Ito M, Saunders TL, Camper SA, Jameson JL (1998) Role of Ahch in gonadal development and gametogenesis. Nat Genet 20:353–357 PubMedCrossRefGoogle Scholar
  113. 113.
    Yuan L, Liu JG, Hoja MR, Wilbertz J, Nordqvist K, Hoog C (2002) Female germ cell aneuploidy and embryo death in mice lacking the meiosis-specific protein SCP3. Science 296:1115–1118 PubMedCrossRefGoogle Scholar
  114. 114.
    Yuan L, Liu JG, Zhao J, Brundell E, Daneholt B, Hoog C (2000) The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Mol Cell 5:73–83 PubMedCrossRefGoogle Scholar
  115. 115.
    Zenvirth D, Richler C, Bardhan A, Baudat F, Barzilai A, Wahrman J, Simchen G (2003) Mammalian meiosis involves DNA double-strand breaks with 3′overhangs. Chromosoma 111:369–376 PubMedGoogle Scholar
  116. 116.
    Zindy F, den Besten W, Chen B, Rehg JE, Latres E, Barbacid M, Pollard JW, Sherr CJ, Cohen PE, Roussel MF (2001) Control of spermatogenesis in mice by the cyclin D-dependentkinase inhibitors p18Ink4c and p19Ink4d. Mol Cell Biol 21:3244–3255 PubMedCrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Department of Physiology and Cardiovascular GenomicsMedical University of OhioToledoUSA

Personalised recommendations