Skip to main content

Synthesis, Metabolism, and Trans-Bilayer Movement of Long-Chain Base

  • Chapter
Sphingolipid Biology

Summary

Long-chain bases (LCBs), mainly sphingosine in mammals and phytosphingosine in plants and fungi, act not only as structural constituents of sphingolipids but also as signaling molecules. LCBs can be converted to other bioactive lipid molecules, ceramide and long-chain base 1-phosphates (sphingosine 1-phosphate in mammals). In theory, the balance of these lipids determines cell fate (the sphingolipid rheostat model). Therefore, the regulation of the synthesis and metabolism of LCBs is quite important. To function as a signaling molecule or to become a substrate for certain metabolizing enzymes, the LCB must be localized in a specific leaflet of the lipid bilayer. Thus, regulation of LCB trans-bilayer movement is also important. This review focuses on recent gains in our understanding of the synthesis, metabolism, and trans-bilayer movement of LCBs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  • Bai J, Pagano RE (1997) Measurement of spontaneous transfer and transbilayer movement of BODIPY-labeled lipids in lipid vesicles. Biochemistry, 36, 8840–8848.

    Article  PubMed  CAS  Google Scholar 

  • Barila D, Plateroti M, Nobili F, Muda AO, Xie Y, Morimoto T, Perozzi G (1996) The Dri 42 gene, whose expression is up-regulated during epithelial differentiation, encodes a novel endoplasmic reticulum resident transmembrane protein. J Biol Chem, 271, 29928–29936.

    Article  PubMed  CAS  Google Scholar 

  • Beeler T, Bacikova D, Gable K, Hopkins L, Johnson C, Slife H, Dunn T (1998) The Saccharomyces cerevisiae TSC10/YBR265w gene encoding 3-ketosphinganine reductase is identified in a screen for temperature-sensitive suppressors of the Ca2+-sensitive csg2α mutant. J Biol Chem, 273, 30688–30694.

    Article  PubMed  CAS  Google Scholar 

  • Billich A, Bornancin F, Devay P, Mechtcheriakova D, Urtz N, Baumruker T (2003) Phosphorylation of the immunomodulatory drug FTY720 by sphingosine kinases. J Biol Chem, 278, 47408–47415.

    Article  PubMed  CAS  Google Scholar 

  • Brindley DN (2004) Lipid phosphate phosphatases and related proteins: signaling functions in development, cell division, and cancer. J Cell Biochem, 92, 900–912.

    Article  PubMed  CAS  Google Scholar 

  • Cuvillier O, Pirianov G, Kleuser B, Vanek PG, Coso OA, Gutkind S, Spiegel S (1996) Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature, 381, 800–803.

    Article  PubMed  CAS  Google Scholar 

  • Cuvillier O (2002) Sphingosine in apoptosis signaling. Biochim Biophys Acta, 1585, 153–162.

    PubMed  CAS  Google Scholar 

  • Ferguson-Yankey SR, Skrzypek MS, Lester RL, Dickson RC (2002) Mutant analysis reveals complex regulation of sphingolipid long chain base phosphates and long chain bases during heat stress in yeast. Yeast, 19, 573–586.

    Article  PubMed  CAS  Google Scholar 

  • Ferlinz K, Kopal G, Bernardo K, Linke T, Bar J, Breiden B, Neumann U, Lang F, Schuchman EH, Sandhoff K (2001) Human acid ceramidase: processing, glycosylation, and lysosomal targeting. J Biol Chem, 276, 35352–35360.

    Article  PubMed  CAS  Google Scholar 

  • Fyrst H, Herr DR, Harris GL, Saba JD (2004) Characterization of free endogenous C14 and C16 sphingoid bases from Drosophila melanogaster. J Lipid Res, 45, 54–62.

    Article  PubMed  CAS  Google Scholar 

  • Gerdt S, Lochnit G, Dennis RD, Geyer R (1997) Isolation and structural analysis of three neutral glycosphingolipids from a mixed population of Caenorhabditis elegans (Nematoda:Rhabditida). Glycobiology, 7, 265–275.

    Article  PubMed  CAS  Google Scholar 

  • Grilley MM, Stock SD, Dickson RC, Lester RL, Takemoto JY (1998) Syringomycin action gene SYR2 is essential for sphingolipid 4-hydroxylation in Saccharomyces cerevisiae. J Biol Chem, 273, 11062–11068.

    Article  PubMed  CAS  Google Scholar 

  • Guillas I, Kirchman PA, Chuard R, Pfefferli M, Jiang JC, Jazwinski SM, Conzelmann A (2001) C26-CoA-dependent ceramide synthesis of Saccharomyces cerevisiae is operated by Laglp and Laclp. EMBO J, 20, 2655–266.

    Article  PubMed  CAS  Google Scholar 

  • Guillas I, Jiang JC, Vionnet C, Roubaty C, Uldry D, Chuard R, Wang J, Jazwinski SM, Conzelmann A (2003) Human homologues of LAG1 reconstitute Acyl-CoA-dependent ceramide synthesis in yeast. J Biol Chem, 278, 37083–37091.

    Article  PubMed  CAS  Google Scholar 

  • Haak D, Gable K, Beeler T, Dunn T (1997) Hydroxylation of Saccharomyces cerevisiae ceramides requires Sur2p and Scs7p. J Biol Chem, 272, 29704–29710.

    Article  PubMed  CAS  Google Scholar 

  • Hirschberg K, Rodger J, Futerman AH (1993) The long-chain sphingoid base of sphingolipids is acylated at the cytosolic surface of the endoplasmic reticulum in rat liver. Biochem J, 290, 751–757.

    PubMed  CAS  Google Scholar 

  • Holthuis JC, Levine TP (2005) Lipid traffic: floppy drives and a superhighway. Nat Rev Mol Cell Biol, 6, 209–220.

    Article  PubMed  CAS  Google Scholar 

  • Johnson KR, Becker KP, Facchinetti MM, Hannun YA, Obeid LM (2002) PKC-dependent activation of sphingosine kinase 1 and translocation to the plasma membrane. Extracellular release of sphingosine-1-phosphate induced by phorbol 12-myristate 13-acetate (PMA). J Biol Chem, 277, 35257–35262.

    Article  PubMed  CAS  Google Scholar 

  • Kihara A, Igarashi Y (2002) Identification and characterization of a Saccharomyces cerevisiae gene, RSB1, involved in sphingoid long-chain base release. J Biol Chem, 277, 30048–30054.

    Article  PubMed  CAS  Google Scholar 

  • Kihara A, Sano T, Iwaki S, Igarashi Y (2003) Transmembrane topology of sphingoid long-chain base-1-phosphate phosphatase, Lcb3p. Genes Cells, 8, 525–535.

    Article  PubMed  CAS  Google Scholar 

  • Kihara A, Igarashi Y (2004a) FVT-1 is a mammalian 3-ketodihydrosphingosine reductase with an active site that faces the cytosolic side of the endoplasmic reticulum membrane. J Biol Chem, 279, 49243–49250.

    Article  PubMed  CAS  Google Scholar 

  • Kihara A, Igarashi Y (2004b) Cross talk between sphingolipids and glycerophospholipids in the establishment of plasma membrane asymmetry. Mol Biol Cell, 15, 4949–4959.

    Article  PubMed  CAS  Google Scholar 

  • Kihara A, Kurotsu F, Sano T, Iwaki S, Igarashi Y (2005) Long-chain base kinase Lcb4 is anchored to the membrane through its palmitoylation by Akrl. Mol Cell Biol, in press.

    Google Scholar 

  • Kohama T, Olivera A, Edsall L, Nagiec MM, Dickson R, Spiegel S (1998) Molecular cloning and functional characterization of murine sphingosine kinase. J Biol Chem, 273, 23722–23728.

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Sugiura M, Nava VE, Edsall LC, Kono K, Poulton S, Milstien S, Kohama T, Spiegel S (2000) Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform. J Biol Chem, 275, 19513–19520.

    Article  PubMed  CAS  Google Scholar 

  • Mandala SM, Thornton R, Tu Z, Kurtz MB, Nickels J, Broach J, Menzeleev R, Spiegel S (1998) Sphingoid base 1-phosphate phosphatase: a key regulator of sphingolipid metabolism and stress response. Proc Natl Acad Sci USA, 95, 150–155.

    Article  PubMed  CAS  Google Scholar 

  • Mandala SM, Thornton R, Galve-Roperh I, Poulton S, Peterson C, Olivera A, Bergstrom J, Kurtz MB, Spiegel S (2000) Molecular cloning and characterization of a lipid phosphohydrolase that degrades sphingosine-1-phosphate and induces cell death. Proc Natl Acad Sci USA, 97, 7859–7864.

    Article  PubMed  CAS  Google Scholar 

  • Mandon EC, Ehses I, Rother J, van Echten G, Sandhoff K (1992) Subcellular localization and membrane topology of serine palmitoyltransferase, 3-dehydrosphinganine reductase, and sphinganine N-acyltransferase in mouse liver. J Biol Chem, 267, 11144–11148.

    PubMed  CAS  Google Scholar 

  • Mao C, Wadleigh M, Jenkins GM, Hannun YA, Obeid LM (1997) Identification and characterization of Saccharomyces cerevisiae dihydrosphingosine-1-phosphate phosphatase. J Biol Chem, 272, 28690–28694.

    Article  PubMed  CAS  Google Scholar 

  • Mao C, Xu R, Bielawska A, Obeid LM (2000a) Cloning of an alkaline ceramidase from Saccharomyces cerevisiae. An enzyme with reverse (CoA-independent) ceramide synthase activity. J Biol Chem, 275, 6876–6884.

    Article  PubMed  CAS  Google Scholar 

  • Mao C, Xu R, Bielawska A, Szulc ZM, Obeid LM (2000b) Cloning and characterization of a Saccharomyces cerevisiae alkaline ceramidase with specificity for dihydroceramide. J Biol Chem, 275, 31369–31378.

    Article  PubMed  CAS  Google Scholar 

  • Mao C, Xu R, Szulc ZM, Bielawska A, Galadari SH, Obeid LM (2001) Cloning and characterization of a novel human alkaline ceramidase. A mammalian enzyme that hydrolyzes phytoceramide. J Biol Chem, 276, 26577–26588.

    Article  PubMed  CAS  Google Scholar 

  • Mizutani Y, Kihara A, Igarashi Y (2005) Mammalian Lass6 and its related family members regulate synthesis of specific ceramides. Biochem J, in press.

    Google Scholar 

  • Nagiec MM, Skrzypek M, Nagiec EE, Lester RL, Dickson RC (1998) The LCB4 (YOR171c) and LCB5 (YLR260w) genes of Saccharomyces encode sphingoid long chain base kinases. J Biol Chem, 273, 19437–19442.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa C, Kihara A, Gokoh M, Igarashi Y (2003) Identification and characterization of a novel human sphingosine-1-phosphate phosphohydrolase, hSPP2. J Biol Chem, 278, 1268–1272.

    Article  PubMed  CAS  Google Scholar 

  • Pettus BJ, Chalfant CE, Hannun YA (2002) Ceramide in apoptosis: an overview and current perspectives. Biochim Biophys Acta, 1585, 114–125.

    PubMed  CAS  Google Scholar 

  • Pitson SM, Moretti PA, Zebol JR, Zareie R, Derian CK, Darrow AL, Qi J, D’Andrea RJ, Bagley CJ, Vadas MA, Wattenberg BW (2002) The nucleotide-binding site of human sphingosine kinase 1. J Biol Chem, 277, 49545–49553.

    Article  PubMed  CAS  Google Scholar 

  • Pitson SM, Moretti PA, Zebol JR, Lynn HE, Xia P, Vadas MA, Wattenberg BW (2003) Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J, 22, 5491–5500.

    Article  PubMed  CAS  Google Scholar 

  • Riebeling C, Allegood JC, Wang E, Merrill AH, Jr., Futerman AH (2003) Two mammalian longevity assurance gene (LAG1) family members, trh1 and trh4, regulate dihydroceramide synthesis using different fatty acyl-CoA donors. J Biol Chem, 278, 43452–43459.

    Article  PubMed  CAS  Google Scholar 

  • Schorling S, Vallee B, Barz WP, Riezman H, Oesterhelt D (2001) Laglp and Laclp are essential for the Acyl-CoA-dependent ceramide synthase reaction in Saccharomyces cerevisae. Mol Biol Cell, 12, 3417–3427.

    PubMed  CAS  Google Scholar 

  • Sigal YJ, McDermott MI, Morris AJ (2005) Integral membrane lipid phosphatases/phosphotransferases: common structure and diverse functions. Biochem J, 387, 281–293.

    Article  PubMed  CAS  Google Scholar 

  • Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol, 4, 397–407.

    Article  PubMed  CAS  Google Scholar 

  • Stukey J, Carman GM (1997) Identification of a novel phosphatase sequence motif. Protein Sci, 6, 469–472.

    Article  PubMed  CAS  Google Scholar 

  • Tani M, Iida H, Ito M (2003) O-glycosylation of mucin-like domain retains the neutral ceramidase on the plasma membranes as a type II integral membrane protein. J Biol Chem, 278, 10523–10530.

    Article  PubMed  CAS  Google Scholar 

  • Ternes P, Franke S, Zahringer U, Sperling P, Heinz E (2002) Identification and characterization of a sphingolipid α4-desaturase family. J Biol Chem, 277, 25512–25518.

    Article  PubMed  CAS  Google Scholar 

  • Vallee B, Riezman H (2005) Liplp: a novel subunit of acyl-CoA ceramide synthase. EMBO J, 24, 730–741.

    Article  PubMed  CAS  Google Scholar 

  • Venkataraman K, Riebeling C, Bodennec J, Riezman H, Allegood JC, Sullards MC, Merrill AH, Jr., Futerman AH (2002) Upstream of growth and differentiation factor 1 (uog1), a mammalian homolog of the yeast longevity assurance gene 1 (LAG1), regulates N-stearoyl-sphinganine (C18-(dihydro)ceramide) synthesis in a fumonisin B1-independent manner in mammalian cells. J Biol Chem, 277, 35642–35649.

    Article  PubMed  CAS  Google Scholar 

  • Yokota S, Taniguchi Y, Kihara A, Mitsutake S, Igarashi Y (2004) Aspl77 in C4 domain of mouse sphingosine kinase la is important for the sphingosine recognition. FEBS Lett, 578, 106–110.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Kihara, A., Igarashi, Y. (2006). Synthesis, Metabolism, and Trans-Bilayer Movement of Long-Chain Base. In: Hirabayashi, Y., Igarashi, Y., Merrill, A.H. (eds) Sphingolipid Biology. Springer, Tokyo. https://doi.org/10.1007/4-431-34200-1_7

Download citation

Publish with us

Policies and ethics