Skip to main content

Sphingolipids and Lung Vascular Barrier Regulation

  • Chapter
Sphingolipid Biology

Summary

Long thought to function primarily as the structural components of lipid membranes, sphingolipids are now also recognized as vitally important signaling mediators regulating a diverse range of functions. We recently described the potent vascular barrier-regulating properties of one of these sphingolipids, the lipid and angiogenic factor sphingosine 1-phosphate (S1P) (Garcia et al, 2001). Since disruption of vascular barrier integrity commonly occurs in highly morbid inflammatory lung conditions, a better understanding of the mechanism of barrier regulation would have important clinical implications. In this chapter, we provide a brief overview of vascular barrier regulation before detailing the mechanisms underlying potent barrier-enhancing effects of S1P in vitro and in vivo in models of acute lung injury (ALI) syndromes. The potential ramifications of these findings for the development of specific therapeutic interventions for patients with ALI syndromes are then discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  • Brinkmann V, Davis MD, Heise CE, Albert R, Cottens S, Hof R, Bruns C, Prieschl E, Baumruker T, Hiestand P, Foster CA, Zollinger M, Lynch KR (2002). The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem, 277, 21453–21457.

    Article  PubMed  CAS  Google Scholar 

  • Corada M, Mariotti M, Thurston G, Smith K, Kunkel R, Brockhaus M, Lampugnani MG, Martin-Padura I, Stoppacciaro A, Ruco L, McDonald DM, Ward PA, Dejana E (1999) Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci USA, 96, 9815–9820.

    Article  PubMed  CAS  Google Scholar 

  • Dudek SM, Jacobson JR, Chiang ET, Birukov KG, Wang P, Zhan X, Garcia JGN (2004) Pulmonary endothelial cell barrier enhancement by sphingosine 1-phosphate: roles for cortactin and myosin light chain kinase. J Biol Chem, 279, 24692–24700.

    Article  PubMed  CAS  Google Scholar 

  • Dudek SM, Garcia JG (2001) Cytoskeletal regulation of pulmonary vascular permeability. J Appl Physiol, 91, 1487–1500.

    PubMed  CAS  Google Scholar 

  • English D, Welch Z, Kovala AT, Harvey K, Volpert OV, Brindley DN, Garcia JG (2000) Sphingosine 1-phosphate released from platelets during clotting accounts for the potent endothelial cell chemotactic activity of blood serum and provides a novel link between hemostasis and angiogenesis. FASEB J, 14, 2255–2265.

    Article  PubMed  CAS  Google Scholar 

  • Garcia JG, Liu F, Verin AD, Birukova A, Dechert MA, Gerthoffer WT, Bamberg JR, English D (2001) Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edg-dependent cytoskeletal rearrangement. J Clin Invest, 108, 689–701.

    Article  PubMed  CAS  Google Scholar 

  • Graler MH, Bernhardt G, Lipp M (1998). EDG6, a novel G-protein-coupled receptor related to receptors for bioactive lysophospholipids, is specifically expressed in lymphoid tissue. Genomics, 53, 164–169.

    Article  PubMed  CAS  Google Scholar 

  • Hannun YA, Luberto C, Argraves KM (2001) Enzymes of sphingolipid metabolism: from modular to integrative signaling. Biochem, 40, 4893–4903.

    Article  CAS  Google Scholar 

  • Hla T (2003) Signaling and biological actions of sphingosine 1-phosphate. Pharmacol Res, 47, 401–407.

    Article  PubMed  CAS  Google Scholar 

  • Hla T (2001) Sphingosine 1-phosphate receptors. Prostaglandins, 64, 135–142.

    PubMed  CAS  Google Scholar 

  • Hla T, Maciag T (1990) An abundant transcript induced in differentiating human endothelial cells encodes a polypeptide with structural similarities to G-protein-coupled receptors. J Biol Chem, 265, 9308–9313.

    PubMed  CAS  Google Scholar 

  • Kohno T, Matsuyuki H, Inagaki Y, Igarashi Y (2003) Sphingosine 1-phosphate promotes cell migration through the activation of Cdc42 in Edg-6/SlP4-expressing cells. Genes Cells, 8, 685–697.

    Article  PubMed  CAS  Google Scholar 

  • Lampugnani MG, Resnati M, Dejana E, Marchisio PC (1991) The role of integrins in the maintenance of endothelialmonolayer integrity. J Cell Biol, 112, 479–490.

    Article  PubMed  CAS  Google Scholar 

  • Lo SK, Burhop KE, Kaplan JE, Malik AB (1988) Role of platelets in maintenance of pulmonary vascular permeability to protein. Am J Physiol, 254, H763–771.

    PubMed  CAS  Google Scholar 

  • Mandala S, Hajdu R, Bergstrom J, Quackenbush E, Xie J, Milligan J, Thornton R, Shei GJ, Card D, Keohane C, Rosenbach M, Hale J, Lynch CL, Rupprecht K, Parsons W, Rosen H (2002) Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science, 296, 346–349.

    Article  PubMed  CAS  Google Scholar 

  • McVerry BJ, Garcia JG (2005) In vitro and in vivo modulation of vascular barrier integrity by sphingosine 1-phosphate: mechanistic insights. Cell Signal, 17, 131–139.

    Article  PubMed  CAS  Google Scholar 

  • McVerry BJ, Peng X, Hassoun PM, Sammani S, Simon BA, Garcia JG. (2004) Sphingosine 1-phosphate reduces vascular leak in murine and canine models of acute lung injury. Am J Respir Crit Care Med, 170, 987–993.

    Article  PubMed  Google Scholar 

  • Moreno L, Bonde P, Jacobson J, Garcia JG (2005) Attenuation of rodent Ischemia-Rperfusion Acute Lung Injury by Sphingosine-1-Phosphate. Proc Am Thorac Soc, 2, A476.

    Google Scholar 

  • Okazaki H, Ishizaka N, Sakurai T, Kurokawa K, Goto K, Kumada M, Takuwa Y (1993) Molecular cloning of a novel putative G protein-coupled receptor expressed in the cardiovascular system. Biochem Biophys Res Commun, 190, 1104–1109.

    Article  PubMed  CAS  Google Scholar 

  • Peng X, Hassoun PM, Sammani S, McVerry BJ, Burne MJ, Rabb H, Pearse D, Tuder RM, Garcia JG (2004) Protective effects of sphingosine 1-phosphate in murine endotoxin-induced inflammatory lung injury. Am J Respir Crit Care Med, 169, 1245–1251.

    Article  PubMed  Google Scholar 

  • Phillips PG, Lum H, Malik AB, Tsan M (1989) Phallacidin prevents thrombin-induced increases in endothelial permeability to albumin. Am J Physiol Cell Physiol, 257, C562–567.

    CAS  Google Scholar 

  • Sanchez T, Hla T (2004) Structural and functional characteristics of S1P receptors. J Cell Biochem, 92, 913–922.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez T, Estrada-Hernandez T, Paik JH, Wu MT, Venkataraman K, Brinkmann V, Claffey K, Hla T (2003) Phosphorylation and action of the immunomodu-lator FTY720 inhibits vascular endothelial cell growth factor-induced vascular permeability. J Biol Chem, 278, 47281–47290.

    Article  PubMed  CAS  Google Scholar 

  • Schaphorst KL, Chiang E, Jacobs KN, Zaiman A, Natarajan V, Wigley F, Garcia JG (2003) Role of sphingosine-1 phosphate in the enhancement of endothelial barrier integrity by platelet-released products. Am J Physiol Lung Cell Mol Physiol, 285, L258–267.

    PubMed  CAS  Google Scholar 

  • Shikata Y, Birukov KG, Birukova AA, Verin A, Garcia JG (2003) Involvement of site-specific FAK phosphorylation in sphingosine-1 phosphate-and thrombin-induced focal adhesion remodeling: role of Src and GIT. FASEB J, 17, 2240–2249.

    Article  PubMed  CAS  Google Scholar 

  • Shikata Y, Birukov KG, Garcia JG (2003) S1P induces FA remodeling in human pulmonary endothelial cells: role of Rac, GIT1, FAK, and paxillin. J Appl Physiol, 94, 1193–1203.

    PubMed  CAS  Google Scholar 

  • Singleton PA, Dudek SM, Chiang ET Garcia JG (2005) Regulation of sphingosine 1-phosphate-induced endothelial cytoskeletal rearrangement and barrier enhancement by S1P1 receptor, PI3 kinase, Tiam1/Rac1 and alpha-actinin. FASEB J, 19, 1646–1656.

    Article  PubMed  CAS  Google Scholar 

  • Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol, 4, 397–407.

    Article  PubMed  CAS  Google Scholar 

  • Verin AD, Birukova A, Wang P, Birukov K, Garcia JGN (2001) Microtubule disassembly increases endothelial cell barrier dysfunction: role of microfilament crosstalk and myosin light chain phosphorylation. Am J Physiol Lung Cell Mol Physiol, 281, L565–574.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Moreno, L., Dudek, S.M., Garcia, J.G.N. (2006). Sphingolipids and Lung Vascular Barrier Regulation. In: Hirabayashi, Y., Igarashi, Y., Merrill, A.H. (eds) Sphingolipid Biology. Springer, Tokyo. https://doi.org/10.1007/4-431-34200-1_31

Download citation

Publish with us

Policies and ethics