Skip to main content

Modulation of Proteolytic Processing by Glycosphingolipids Generates Amyloid β-Peptide

  • Chapter
Sphingolipid Biology

Summary

Extracellular amyloid β-peptide (Aβ) deposits in the brain are characteristic of Alzheimer’s disease. Proteolytic cleaving of amyloid precursor protein (APP) by β- and α-secretases generate these deposits. The cleavage by those secretases occurs predominantly in post-Golgi secretory and endocytic compartments and is influenced by cholesterol, indicating a role of the membrane lipid composition in APP processing. To analyze the function of glycosphingolipids (GSLs) in the proteolytic processing of APP and the generation of Aβ, we inhibited glycosylceramide synthase, the first enzyme in GSL biosynthesis pathway. The depletion of GSLs markedly reduced the secretion of endogenous APP in different cell types, including human neuroblastoma SH-SY5Y cells. Conversely, the addition of exogenous brain gangliosides to cultured cells increased the levels of both cellular and secreted APP. Importantly, depletion of GSLs strongly decreased the secretion of Aβ. Thus, enzymes involved in GSL metabolism might represent targets to inhibit Aβ production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4. References

  • Aguzzi A, Haass C (2003) Games played by rogue proteins in prion disorders and Alzheimer’s disease. Science, 302, 814–818.

    Article  PubMed  CAS  Google Scholar 

  • Annaert W, de Strooper B (2002) A cell biological perspective on Alzheimer’s disease. Annu Rev Cell Dev Biol, 18, 25–51.

    Article  PubMed  CAS  Google Scholar 

  • Chyung JH, Selkoe DJ (2003) Inhibition of receptor mediated endocytosis demonstrates generation of amyloid beta-protein at the cell surface. J.Biol.Chem, 278, 51035–51043.

    Article  PubMed  CAS  Google Scholar 

  • Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, Hatanpaa K, Troncoso JC, Mattson MP (2004) Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci U S A, 101, 2070–2075.

    Article  PubMed  CAS  Google Scholar 

  • Haass C, Koo EH, Mellon A, Hung AY, Selkoe DJ (1992) Targeting of cell-surface beta-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature, 357, 500–503.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann T (2001) Cholesterol, A beta and Alzheimer’s disease. Trends Neurosci, 24, S45–S48.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi H, Kimura N, Yamaguchi H, Hasegawa K, Yokoseki T, Shibata M, Ya-mamoto N, Michikawa M, Yoshikawa Y, Terao K, Matsuzaki K, Lemere CA, Selkoe DJ, Naiki H, Yanagisawa K (2004) A seed for Alzheimer amyloid in the brain. J Neurosci, 24, 4894–4902.

    Article  PubMed  CAS  Google Scholar 

  • Hutter-Paier B, Huttunen HJ, Puglielli L, Eckman CB, Kim DY, Hofmeister A, Moir RD, Domnitz SB, Frosch MP, Windisch M, Kovacs DM (2004) The ACAT inhibitor CP-113,818 markedly reduces amyloid pathology in a mouse model of Alzheimer’s disease. Neuron, 44, 227–238.

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa S, Nakajo N, Sakiyama H, Hirabayashi Y (1994) A mouse B16 melanoma mutant deficient in glycolipids. Proc Natl Acad Sci U S A, 91, 2703–2707.

    Article  PubMed  CAS  Google Scholar 

  • Kok JW, Babia T, Filipeanu CM, Nelemans A, Egea G, Hoekstra D (1998) PDMP blocks brefeldin A-induced retrograde membrane transport from golgi to ER: evidence for involvement of calcium homeostasis and dissociation from sphingolipid metabolism. J Cell Biol, 142, 25–38.

    Article  PubMed  CAS  Google Scholar 

  • Kolter T, Proia RL, Sandhoff K (2002) Combinatorial ganglioside biosynthesis. J Biol Chem, 277, 25859–25862.

    Article  PubMed  CAS  Google Scholar 

  • Komori H, Ichikawa S, Hirabayashi Y, Ito M (1999) Regulation of intracellular ceramide content in B16 melanoma cells. Biological implications of ceramide glycosylation. J Biol Chem, 274, 8981–8987.

    Article  PubMed  CAS  Google Scholar 

  • Koo EH, Sisodia SS, Archer DR, Martin LJ, Weidemann A, Beyreuther K, Fischer P, Masters CL, Price DL (1990) Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport. Proc Natl Acad Sci U S A, 87, 1561–1565.

    Article  PubMed  CAS  Google Scholar 

  • Koo EH, Squazzo SL (1994) Evidence that production and release of amyloid beta-protein involves the endocytic pathway. J Biol Chem, 269, 17386–17389.

    PubMed  CAS  Google Scholar 

  • Koo EH, Squazzo SL, Selkoe DJ, Koo CH (1996) Trafficking of cell-surface amyloid beta-protein precursor. I. Secretion, endocytosis and recycling as detected by labeled monoclonal antibody. J Cell Sci, 109, 991–998.

    PubMed  CAS  Google Scholar 

  • Mutoh T, Tokuda A, Inokuchi J, Kuriyama M (1998) Glucosylceramide synthase inhibitor inhibits the action of nerve growth factor in PC12 cells. J Biol Chem, 273, 26001–26007.

    Article  PubMed  CAS  Google Scholar 

  • Naslavsky N, Shmeeda H, Friedlander G, Yanai A, Futerman AH, Barenholz Y, Taraboulos A (1999) Sphingolipid depletion increases formation of the scrapie prion protein in neuroblastoma cells infected with prions. J Biol Chem, 274, 20763–20771.

    Article  PubMed  CAS  Google Scholar 

  • Opekarova M, Tanner W (2003) Specific lipid requirements of membrane proteins-a putative bottleneck in heterologous expression. Biochim Biophys Acta, 1610, 11–22.

    Article  PubMed  CAS  Google Scholar 

  • Puglielli L, Tanzi RE, Kovacs DM (2003) Alzheimer’s disease: the cholesterol connection. Nat Neurosci, 6, 345–351.

    Article  PubMed  CAS  Google Scholar 

  • Rosenwald AG, Pagano RE (1994) Effects of the glucosphingolipid synthesis inhibitor, PDMP, on lysosomes in cultured cells. J Lipid Res, 35, 1232–1240.

    PubMed  CAS  Google Scholar 

  • Sawamura N, Ko M, Yu W, Zou K, Hanada K, Suzuki T, Gong JS, Yanagisawa K, Michikawa M (2004) Modulation of amyloid precursor protein cleavage by cellular sphingolipids. J Biol Chem, 279, 11984–11991.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev, 81, 741–766.

    PubMed  CAS  Google Scholar 

  • Simons K, Ehehalt R (2002) Cholesterol, lipid rafts, and disease. J Clin Invest, 110, 597–603.

    Article  PubMed  CAS  Google Scholar 

  • Sisodia SS, Koo EH, Beyreuther K, Unterbeck A, Price DL (1990) Evidence that beta-amyloid protein in Alzheimer’s disease is not derived by normal processing. Science, 248, 492–495.

    Article  PubMed  CAS  Google Scholar 

  • Sprong H, Degroote S, Claessens T, van Drunen J, Oorschot V, Westerink BH, Hirabayashi Y, Klumperman J, van der S P, van Meer G (2001b) Glycosphin-golipids are required for sorting melanosomal proteins in the Golgi complex. J Cell Biol, 155, 369–380.

    Article  PubMed  CAS  Google Scholar 

  • Sprong H, van der Sluijs P., van Meer G (2001a) How proteins move lipids and lipids move proteins. Nat Rev Mol Cell Biol, 2, 504–513.

    Article  PubMed  CAS  Google Scholar 

  • Steiner H, Haass C (2000) Intramembrane proteolysis by presenilins. Nat Rev Mol Cell Biol, 1, 217–224.

    Article  PubMed  CAS  Google Scholar 

  • Sutterlin C, Doering TL, Schimmoller F, Schroder S, Riezman H (1997) Specific requirements for the ER to Golgi transport of GPI-anchored proteins in yeast. J Cell Sci, 110 (Pt 21), 2703–2714.

    PubMed  CAS  Google Scholar 

  • Walter J, Kaether C, Steiner H, Haass C (2001) The cell biology of Alzheimer’s disease: uncovering the secrets of secretases. Curr Opin Neurobiol, 11, 585–590.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe R, Funato K, Venkataraman K, Futerman AH, Riezman H (2002) Sphingolipids are required for the stable membrane association of glycosyl-phosphatidylinositol-anchored proteins in yeast. J Biol Chem, 277, 49538–49544.

    Article  PubMed  CAS  Google Scholar 

  • Wolozin B (2004) Cholesterol and the biology of Alzheimer’s disease. Neuron, 41, 7–10.

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa K, Odaka A, Suzuki N, Ihara Y (1995) GM1 ganglioside-bound amyloid beta-protein (A beta): a possible form of preamyloid in Alzheimer’s disease. Nat Med, 1, 1062–1066.

    Article  PubMed  CAS  Google Scholar 

  • Zha Q, Ruan Y, Hartmann T, Beyreuther K, Zhang D (2004) GM1 ganglioside regulates the proteolysis of amyloid precursor protein. Mol Psychiatry, 9, 946–952.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Tamboli, I.Y., Prager, K., Barth, E., Heneka, M., Sandhoff, K., Walter, J. (2006). Modulation of Proteolytic Processing by Glycosphingolipids Generates Amyloid β-Peptide. In: Hirabayashi, Y., Igarashi, Y., Merrill, A.H. (eds) Sphingolipid Biology. Springer, Tokyo. https://doi.org/10.1007/4-431-34200-1_25

Download citation

Publish with us

Policies and ethics