Skip to main content

A New Pathological Feature of Insulin Resistance and Type 2 Diabetes: Involvement of Ganglioside GM3 and Membrane Microdomains

  • Chapter
Sphingolipid Biology

Summary

Membrane microdomains (lipid rafts), which are critical for proper compartmentalization of insulin signaling, also play a role in the pathogenesis of insulin resistance, and yet this role has not been investigated. Detergent-resistant membrane microdomains (DRMs), isolated in low density fractions, are rich in cholesterol, glycosphingolipids and various signaling molecules. TNFφ induces insulin resistance in type 2 diabetes, but its action mechanism is not fully understood. We found a selective increase in the acidic glycosphingolipid ganglioside GM3 in 3T3-L1 adipocytes treated with TNFφ, suggesting a specific function for GM3. We extended these in vitro observations to living animals using obese Zucker fa/fa rats and ob/ob mice, in which the GM3 synthase mRNA levels in the white adipose tissues are significantly higher than in their lean controls. In DRMs from TNFφ-treated 3T3-L1 adipocytes, GM3 levels were doubled those of normal adipocytes. Additionally, insulin receptor (IR) accumulations in DRMs were diminished, while caveolin and flotillin levels were unchanged. GM3 depletion counteracted the TNFφ-induced inhibition of IR accumulation into DRMs. Together, these findings provide compelling evidence an insulin metabolic signaling defect can be attributed to a loss of IRs in the microdomains due to an accumulation of GM3. Therefore, it is likely that life-style related diseases, such as type 2 diabetes, are membrane microdomain disorders caused by aberrant expression of glycosphingolipids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

7. References

  • Bickel, P. E. (2002). Lipid rafts and insulin signaling. Am J Physiol Endocrinol Metab, 282, E1–E10.

    PubMed  CAS  Google Scholar 

  • Cohen, A. W., Razani, B., Wang, X. B., Combs, T. P., Williams, T. M., Scherer, P. E., and Lisanti, M. P. (2003a). Caveolin-1-deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissue. Am J Physiol Cell Physiol, 285, C222–235.

    PubMed  CAS  Google Scholar 

  • Cohen, A. W., Combs, T. P., Scherer, P. E., and Lisanti, M. P. (2003b). Role of caveolin and caveolae in insulin signaling and diabetes. Am J Physiol Endocrinol Metab, 285, E1151–1160

    PubMed  CAS  Google Scholar 

  • Couet, J., Li, S., Okamoto, T., Ikezu, T., and Lisanti, M. P. (1997). Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem, 272, 6525–6533.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, R. I., Smith, R. M., and Jarett, L. (1987). Insulin and alpha 2-macroglobulin-methylamine undergo endocytosis by different mechanisms in rat adipocytes: I. Comparison of cell surface events. J Cell Physiol, 133, 203–212.

    Article  PubMed  CAS  Google Scholar 

  • Gustavsson, J., Parpal, S., Karlsson, M., Ramsing, C., Thorn, H., Borg, M., Lindroth, M, Peterson, K. H., Magnusson, K. E., and Stralfors, P. (1999). Localization of the insulin receptor in caveolae of adipocyte plasma membrane. Faseb J, 13, 1961–1971.

    PubMed  CAS  Google Scholar 

  • Hakomori, S. I. (2000). Cell adhesion/recognition and signal transduction through glycosphingolipid microdomain. Glycoconj J, 17, 143–151.

    Article  PubMed  CAS  Google Scholar 

  • Hotamisligil, G. S., Shargill, N. S., and Spiegelman, B. M. (1993). Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science, 259, 87–91.

    Article  PubMed  CAS  Google Scholar 

  • Hotamisligil, G.S., Murray, D.L., Choy, L.N. and Spiegelman, B.M. (1994a) Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc Natl Acad Sci U S A, 91, 4854–4858.

    Article  PubMed  CAS  Google Scholar 

  • Hotamisligil, G.S. and Spiegelman, B.M. (1994b) Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes, 43, 1271–1278.

    Article  PubMed  CAS  Google Scholar 

  • Hotamisligil, G.S., Arner, P., Caro, J.F., Atkinson, R.L. and Spiegelman, B.M. (1995) Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest, 95, 2409–2415.

    Article  PubMed  CAS  Google Scholar 

  • Inokuchi, J., Momosaki, K., Shimeno, H., Nagamatsu, A. and Radin, N.S. (1989) Effects of D-threo-PDMP, an inhibitor of glucosylceramide synthetase, on expression of cell surface glycolipid antigen and binding to adhesive proteins by B16 melanoma cells. J Cell Physiol, 141, 573–583.

    Article  PubMed  CAS  Google Scholar 

  • Inokuchi, J. and Radin, N. (1987) Preparation of the active isomer of l-phenyl-2-decanoylamino-3-morpholino-l-propanol, inhibitor of murine glucocerebroside synthetase. J Lipid Res, 28, 565–571.

    PubMed  CAS  Google Scholar 

  • Iwanishi, M., Haruta, T., Takata, Y., Ishibashi, O., Sasaoka, T., Egawa, K., Imamura, T., Naitou, K., Itazu, T. and Kobayashi, M. (1993) A mutation (Trp1193→Leu1193) in the tyrosine kinase domain of the insulin receptor associated with type A syndrome of insulin resistance. Diabetologia, 36, 414–422.

    Article  PubMed  CAS  Google Scholar 

  • Kabayama, K., Sato, T., Kitamura, F., Uemura, S., Kang, B.W., Igarashi, Y. and Inokuchi, J. (2005) TNFalpha-induced insulin resistance in adipocytes as a membrane microdomain disorder: involvement of ganglioside GM3. Glycobiology, 15, 21–29.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, A., Mora, S., Shigematsu, S., Pessin, J. E., and Saltiel, A. R. (2002). The insulin receptor catalyzes the tyrosine phosphorylation of caveolin-1. J Biol Chem, 277, 30153–30158.

    Article  PubMed  CAS  Google Scholar 

  • Mastick, C. C., and Saltiel, A. R. (1997). Insulin-stimulated tyrosine phosphorylation of caveolin is specific for the differentiated adipocyte phenotype in 3T3-L1 cells. J Biol Chem, 272, 20706–20714.

    Article  PubMed  CAS  Google Scholar 

  • Mitsuda, T., Furukawa, K., Fukumoto, S., Miyazaki, H., and Urano, T. (2002). Overexpression of ganglioside GM1 results in the dispersion of platelet-derived growth factor receptor from glycolipid-enriched microdomains and in the suppression of cell growth signals. J Biol Chem, 277, 11239–11246.

    Article  PubMed  CAS  Google Scholar 

  • Muller, G., Jung, C., Wied, S., Welte, S., Jordan, H., and Frick, W. (2001). Redistribution of glycolipid raft domain components induces insulin-mimetic signaling in rat adipocytes. Mol Cell Biol, 21, 4553–4567.

    Article  PubMed  CAS  Google Scholar 

  • Nystrom, F. H., Chen, H., Cong, L. N., Li, Y., and Quon, M. J. (1999). Caveolin-1 interacts with the insulin receptor and can differentially modulate insulin signaling in transfected Cos-7 cells and rat adipose cells. Mol Endocrinol, 13, 2013–2024.

    Article  PubMed  CAS  Google Scholar 

  • Ohashi, M. (1979). A comparison of the ganglioside distributions of fat tissues in various animals by two-dimensional thin layer chromatography. Lipids, 14, 52–57.

    Article  PubMed  CAS  Google Scholar 

  • Parpal, S., Karlsson, M., Thorn, H., and Stralfors, P. (2001). Cholesterol depletion disrupts caveolae and insulin receptor signaling for metabolic control via insulin receptor substrate-1, but not for mitogen-activated protein kinase control. J Biol Chem, 276, 9670–9678.

    Article  PubMed  CAS  Google Scholar 

  • Radin, N.S., Shayman, J.A. and Inokuchi, J. (1993) Metabolic effects of inhibiting glucosylceramide synthesis with PDMP and other substances. Adv Lipid Res, 26, 183–213.

    PubMed  CAS  Google Scholar 

  • Schuck, S., Honsho, M., Ekroos, K., Shevchenko, A., and Simons, K. (2003). Resistance of cell membranes to different detergents. Proc Natl Acad Sci U S A, 100, 5795–5800.

    Article  PubMed  CAS  Google Scholar 

  • Simons, K., and Toomre, D. (2000). Lipid rafts and signal transduction. Nat Rev Mol Cell Biol, 1, 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Stephens, J.M., Lee, J. and Pilch, P.F. (1997) Tumor necrosis factor-alpha-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction. J Biol Chem, 272, 971–976.

    Article  PubMed  CAS  Google Scholar 

  • Tagami, S., Inokuchi Ji, J., Kabayama, K., Yoshimura, H., Kitamura, F., Uemura, S., Ogawa, C., Ishii, A., Saito, M., Ohtsuka, Y., et al. (2002). Ganglioside GM3 participates in the pathological conditions of insulin resistance. J Biol Chem, 277, 3085–3092.

    Article  PubMed  CAS  Google Scholar 

  • Uysal, K. T., Wiesbrock, S. M., Marino, M. W., and Hotamisligil, G. S. (1997). Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature, 389, 610–614.

    Article  PubMed  CAS  Google Scholar 

  • Vainio, S., Heino, S., Mansson, J. E., Fredman, P., Kuismanen, E., Vaarala, O., and Ikonen, E. (2002). Dynamic association of human insulin receptor with lipid rafts in cells lacking caveolae. EMBO Rep, 3, 95–100.

    Article  PubMed  CAS  Google Scholar 

  • Virkamaki, A., Ueki, K., and Kahn, C. R. (1999). Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest, 103, 931–943.

    PubMed  CAS  Google Scholar 

  • Wang, X. Q., Sun, P., and Paller, A. S. (2002). Ganglioside induces caveolin-1 redistribution and interaction with the epidermal growth factor receptor. J Biol Chem, 277, 47028–47034.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, T., Hashiramoto, A., Haluzik, M., Mizukami, H., Beck, S., Norton, A., Kono, M., Tsuji, S., Daniotti, J. L., Werth, N., et al. (2003). Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proc Natl Acad Sci USA, 100, 3445–3449.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Inokuchi, Ji., Kabayama, K., Sato, T., Igarashi, Y. (2006). A New Pathological Feature of Insulin Resistance and Type 2 Diabetes: Involvement of Ganglioside GM3 and Membrane Microdomains. In: Hirabayashi, Y., Igarashi, Y., Merrill, A.H. (eds) Sphingolipid Biology. Springer, Tokyo. https://doi.org/10.1007/4-431-34200-1_21

Download citation

Publish with us

Policies and ethics