Skip to main content

Serine Palmitoyltransferase

  • Chapter
  • 3297 Accesses

Summary

Serine palmitoyltransferase (SPT) catalyzes the first unique reaction of de novo sphingolipid biosynthesis. It is a member of the γ-oxoamine synthase family that utilizes pyridoxal 5′-phosphate as a co-factor. Many factors — such as cytokines, irradiation and stress — alter SPT activity, and in some cases mRNA, and increased ceramide production has been proposed to modulate diverse cell behaviours, including programmed cell death. Normal SPT function is critical because missense mutations in the human SPTLC1 gene cause hereditary sensory neuropathy type I, and complete knockout of SPT is embryonic lethal; however, the SPT inhibitor myriocin has been found to decrease atherosclerotic lesions in apo-E deficient mice. SPT is clearly involved in critical cell functions and disease, and much remains to be learned about its regulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  • Acharya U and Acharya JK (2005) Enzymes of sphingolipid metabolism in Drosophila melanogaster. Cell Mol Life Sci, 62, 128–142.

    Article  PubMed  CAS  Google Scholar 

  • Adachi-Yamada T, Gotoh T, Sugimura I, Tateno M, Nishida Y, Onuki T and Date H (1999) De novo synthesis of sphingolipids is required for cell survival by down-regulating c-Jun N-terminal kinase in Drosophila imaginal discs. Mol Cell Biol, 19, 7276–7286.

    PubMed  CAS  Google Scholar 

  • Alvarez-Vasquez F, Sims KJ, Cowart LA, Okamoto Y, Voit EO and Hannun YA (2005) Simulation and validation of modelled sphingolipid metabolism in Saccharomyces cerevisiae. Nature, 433, 425–430.

    Article  PubMed  CAS  Google Scholar 

  • Bejaoui K, Uchida Y, Yasuda S, Ho M, Nishijima M, Brown RH Jr, Holleran WM, Hanada K (2002) Hereditary sensory neuropathy type 1 mutations confer dominant negative effects on serine palmitoyltransferase, critical for sphingolipid synthesis. J Clin Invest, 110, 1301–1308.

    Article  PubMed  CAS  Google Scholar 

  • Bejaoui K, Wu C, Scheffler MD, Haan G, Ashby P, Wu L, de Jong P, Brown RH Jr (2001) SPTLC1 is mutated in hereditary sensory neuropathy, type 1. Nat Genet, 27, 261–262.

    Article  PubMed  CAS  Google Scholar 

  • Billi de Catabbi SC, Setton-Advruj CP, Sterin-Speziale N, San Martin de Viale LC and Cochon AC (2000) Hexachlorobenzene-induced alterations on neutral and acidic sphingomyelinases and serine palmitoyltransferase activities. A time course study in two strains of rats. Toxicology, 149, 89–100.

    Article  PubMed  CAS  Google Scholar 

  • Blazquez C, Geelen MJ, Velasco G and Guzman M (2001) The AMP-activated protein kinase prevents ceramide synthesis de novo and apoptosis in astrocytes. FEBS Lett, 489, 149–153.

    Article  PubMed  CAS  Google Scholar 

  • Braun PE and Snell EE (1967) The biosynthesis of dihydrosphingosine in cell-free preparations of Hansenula ciferri. Proc Natl Acad Sci U S A, 58, 298–303.

    Article  PubMed  CAS  Google Scholar 

  • Buede R, Rinker-Schaffer C, Pinto WJ, Lester RL and Dickson RC (1991) Cloning and characterization of LCB1, a Saccharomyces gene required for biosynthesis of the long-chain base component of sphingolipids. J Bacteriol, 173, 4325–4332.

    PubMed  CAS  Google Scholar 

  • Carton JM, Uhlinger DJ, Batheja AD, Derian C, Ho G, Argenteri D and D’Andrea MR (2003) Enhanced serine palmitoyltransferase expression in proliferating fibroblasts, transformed cell lines, and human tumors. J Histochem Cytochem, 51,715–726.

    PubMed  CAS  Google Scholar 

  • Cowart LA and Hannun YA (2005) Using genomic and lipidomic strategies to investigate sphingolipid function in the yeast heat-stress response. Biochem Soc Trans, 33, 1166–1169.

    Article  PubMed  CAS  Google Scholar 

  • Dawkins JL, Hulme DJ, Brahmbhatt SB, Auer-Grumbach M, Nicholson GA (2001) Mutations in SPTLC1, encoding serine palmitoyltransferase, long chain base subunit-1, cause hereditary sensory neuropathy type I. Nat Genet, 27,309–312.

    Article  PubMed  CAS  Google Scholar 

  • Dedov VN, Dedova IV, Merrill AH, Jr. and Nicholson GA (2004) Activity of partially inhibited serine palmitoyltransferase is sufficient for normal sphingolipid metabolism and viability of HSN1 patient cells. Biochim Biophys Acta, 1688, 168–175.

    PubMed  CAS  Google Scholar 

  • Di Mari SJ, Brady RN and Snell EE (1971) Biosynthesis of sphingolipid bases. IV. The biosynthetic origin of sphingosine in Hansenula ciferri. Arch Biochem Biophys, 143, 553–565.

    Article  PubMed  Google Scholar 

  • Farrell AM, Uchida Y, Nagiec MM, Harris IR, Dickson RC, Elias PM and Holleran WM (1998) UVB irradiation up-regulates serine palmitoyltransferase in cultured human keratinocytes. J Lipid Res, 39, 2031–2038.

    PubMed  CAS  Google Scholar 

  • Friant S, Meier KD and Riezman H (2003) Increased ubiquitin-dependent degradation can replace the essential requirement for heat shock protein induction. Embo J, 22, 3783–3791.

    Article  PubMed  CAS  Google Scholar 

  • Gable K, Slife H, Bacikova D, Monaghan E and Dunn TM (2000) Tsc3p is an 80-amino acid protein associated with serine palmitoyltransferase and required for optimal enzyme activity. J Biol Chem, 275, 7597–7603.

    Article  PubMed  CAS  Google Scholar 

  • Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G and Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 415, 141–147.

    Article  PubMed  CAS  Google Scholar 

  • Geelen MJ and Beynen AC (2000) Consumption of olive oil has opposite effects on plasma total cholesterol and sphingomyelin concentrations in rats. Br J Nutr, 83, 541–547.

    PubMed  CAS  Google Scholar 

  • Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao YL, Ooi CE, Godwin B, Vitols E, Vijayadamodar G, Pochart P, Machineni H, Welsh M, Kong Y, Zerhusen B, Malcolm R, Varrone Z, Collis A, Minto M, Burgess S, McDaniel L, Stimpson E, Spriggs F, Williams J, Neurath K, Ioime N, Agee M, Voss E, Furtak K, Renzulli R, Aanensen N, Carrolla S, Bickelhaupt E, Lazovatsky Y, DaSilva A, Zhong J, Stanyon CA, Finley RL, Jr., White KP, Braverman M, Jarvie T, Gold S, Leach M, Knight J, Shimkets RA, McKenna MP, Chant J and Rothberg JM (2003) A protein interaction map of Drosophila melanogaster. Science, 302, 1727–1736.

    Article  PubMed  CAS  Google Scholar 

  • Gomez del Pulgar T, Velasco G, Sanchez C, Haro A and Guzman M (2002) De novo-synthesized ceramide is involved in cannabinoid-induced apoptosis. Biochem J, 363, 183–188.

    Article  PubMed  CAS  Google Scholar 

  • Grether-Beck S, Timmer A, Felsner I, Brenden H, Brammertz D and Krutmann J (2005) Ultraviolet a-induced signaling involves a ceramide-mediated autocrine loop leading to ceramide de novo synthesis. J Invest Dermatol, 125, 545–553.

    Article  PubMed  CAS  Google Scholar 

  • Han G, Gable K, Yan L, Natarajan M, Krishnamurthy J, Gupta SD, Borovitskaya A, Harmon JM and Dunn TM (2004) The topology of the Lcblp subunit of yeast serine palmitoyltransferase. J Biol Chem, 279, 53707–53716.

    Article  PubMed  CAS  Google Scholar 

  • Hanada K (2003) Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim Biophys Acta, 1632, 16–30.

    PubMed  CAS  Google Scholar 

  • Hanada K, Hara T, Fukasawa M, Yamaji A, Umeda M and Nishijima M (1998) Mammalian cell mutants resistant to a sphingomyelin-directed cytolysin. Genetic and biochemical evidence for complex formation of the LCB1 protein with the LCB2 protein for serine palmitoyltransferase. J Biol Chem, 273, 33787–33794.

    Article  PubMed  CAS  Google Scholar 

  • Hanada K, Hara T and Nishijima M (2000a) D-Serine inhibits serine palmitoyltransferase, the enzyme catalyzing the initial step of sphingolipid biosynthesis. FEBS Lett, 474, 63–65.

    Article  PubMed  CAS  Google Scholar 

  • Hanada K, Hara T and Nishijima M (2000) Purification of the serine palmitoyltransferase complex responsible for sphingoid base synthesis by using affinity peptide chromatography techniques. J Biol Chem, 275, 8409–8415.

    Article  PubMed  CAS  Google Scholar 

  • Hanada K, Hara T, Nishijima M, Kuge O, Dickson RC and Nagiec MM (1997) A mammalian homolog of the yeast LCB1 encodes a component of serine palmitoyltransferase, the enzyme catalyzing the first step in sphingolipid synthesis. J Biol Chem, 272, 32108–32114.

    Article  PubMed  CAS  Google Scholar 

  • Hanada K, Nishijima M and Akamatsu Y (1990) A temperature-sensitive mammalian cell mutant with thermolabile serine palmitoyltransferase for the sphingolipid biosynthesis. J Biol Chem, 265, 22137–22142.

    PubMed  CAS  Google Scholar 

  • Herget T, Esdar C, Oehrlein SA, Heinrich M, Schutze S, Maelicke A and van Echten-Deckert G (2000) Production of ceramides causes apoptosis during early neural differentiation in vitro. J Biol Chem, 275, 30344–30354.

    Article  PubMed  CAS  Google Scholar 

  • Hojjati MR, Li Z and Jiang XC (2005a) Serine palmitoyl-CoA transferase (SPT) deficiency and sphingolipid levels in mice. Biochim Biophys Acta, 1737, 44–51.

    PubMed  CAS  Google Scholar 

  • Hojjati MR, Li Z, Zhou H, Tang S, Huan C, Ooi E, Lu S and Jiang XC (2005b) Effect of myriocin on plasma sphingolipid metabolism and atherosclerosis in apoE-deficient mice. J Biol Chem, 280, 10284–10289.

    Article  PubMed  CAS  Google Scholar 

  • Holleran WM, Feingold KR, Man MQ, Gao WN, Lee JM and Elias PM (1991) Regulation of epidermal sphingolipid synthesis by permeability barrier function. J Lipid Res, 32, 1151–1158.

    PubMed  CAS  Google Scholar 

  • Holleran WM, Uchida Y, Halkier-Sorensen L, Haratake A, Hara M, Epstein JH and Elias PM (1997) Structural and biochemical basis for the UVB-induced alterations in epidermal barrier function. Photodermatol Photoimmunol Photomed, 13, 117–128.

    PubMed  CAS  Google Scholar 

  • Ikushiro H, Hayashi H and Kagamiyama H (2001) A water-soluble homodimeric serine palmitoyltransferase from Sphingomonas paucimobilis EY2395T strain. Purification, characterization, cloning, and overproduction. J Biol Chem, 276, 18249–18256.

    Article  PubMed  CAS  Google Scholar 

  • Ikushiro H, Hayashi H and Kagamiyama H (2003) Bacterial serine palmitoyltransferase: a water-soluble homodimeric prototype of the eukaryotic enzyme. Biochim Biophys Acta, 1647, 116–120.

    PubMed  CAS  Google Scholar 

  • Ikushiro H, Hayashi H and Kagamiyama H (2004) Reactions of serine palmitoyltransferase with serine and molecular mechanisms of the actions of serine derivatives as inhibitors. Biochemistry, 43, 1082–1092.

    Article  PubMed  CAS  Google Scholar 

  • Inuzuka M, Hayakawa M and Ingi T (2005) Serinc, an activity-regulated protein family, incorporates serine into membrane lipid synthesis. J Biol Chem, 280, 35776–83.

    Article  PubMed  CAS  Google Scholar 

  • Jenkins GM, Cowart LA, Signorelli P, Pettus BJ, Chalfant CE and Hannun YA (2002) Acute activation of de novo sphingolipid biosynthesis upon heat shock causes an accumulation of ceramide and subsequent dephosphorylation of SR proteins. J Biol Chem, 277, 42572–42578.

    Article  PubMed  CAS  Google Scholar 

  • Jeong T, Schissel SL, Tabas I, Pownall HJ, Tall AR and Jiang X (1998) Increased sphingomyelin content of plasma lipoproteins in apolipoprotein E knockout mice reflects combined production and catabolic defects and enhances reactivity with mammalian sphingomyelinase. J Clin Invest, 101, 905–912.

    Article  PubMed  CAS  Google Scholar 

  • Jiang Q, Wong J and Ames BN (2004) Gamma-tocopherol induces apoptosis in androgen-responsive LNCaP prostate cancer cells via caspase-dependent and independent mechanisms. Ann N Y Acad Sci, 1031, 399–400.

    Article  PubMed  CAS  Google Scholar 

  • Krisnangkura K and Sweeley CC (1976) Studies on the mechanism of 3-ketosphinganine synthetase. J Biol Chem, 251, 1597–1602.

    PubMed  CAS  Google Scholar 

  • Lehtonen JY, Horiuchi M, Daviet L, Akishita M and Dzau VJ (1999) Activation of the de novo biosynthesis of sphingolipids mediates angiotensin II type 2 receptor-induced apoptosis. J Biol Chem, 274, 16901–16906.

    Article  PubMed  CAS  Google Scholar 

  • Listenberger LL, Ory DS and Schaffer JE (2001) Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J Biol Chem, 276, 14890–14895.

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Zhang X, Sumanasekera C, Lester RL and Dickson RC (2005) Signalling functions for sphingolipid long-chain bases in Saccharomyces cerevisiae. Biochem Soc Trans, 33, 1170–1173.

    Article  PubMed  CAS  Google Scholar 

  • Longo CA, Tyler D and Mallampalli RK (1997) Sphingomyelin metabolism is developmentally regulated in rat lung. Am J Respir Cell Mol Biol, 16, 605–612.

    PubMed  CAS  Google Scholar 

  • Mandala SM, Frommer BR, Thornton RA, Kurtz MB, Young NM, Cabello MA, Genilloud O, Liesch JM, Smith JL and Horn WS (1994) Inhibition of serine palmitoyl-transferase activity by lipoxamycin. J Antibiot (Tokyo), 47, 376–379.

    CAS  Google Scholar 

  • Mandala SM, Thornton RA, Frommer BR, Dreikorn S and Kurtz MB (1997) Viridiofungins, novel inhibitors of sphingolipid synthesis. J Antibiot (Tokyo), 50, 339–343.

    CAS  Google Scholar 

  • Mandon EC, Ehses I, Rother J, van Echten G and Sandhoff K (1992) Subcellular localization and membrane topology of serine palmitoyltransferase, 3-dehydrosphinganine reductase, and sphinganine N-acyltransferase in mouse liver. J Biol Chem, 267, 11144–11148.

    PubMed  CAS  Google Scholar 

  • Mandon EC, van Echten G, Birk R, Schmidt RR and Sandhoff K (1991) Sphingolipid biosynthesis in cultured neurons. Down-regulation of serine palmitoyltransferase by sphingoid bases. Eur J Biochem, 198, 667–674.

    Article  PubMed  CAS  Google Scholar 

  • Memon RA, Grunfeld C, Moser AH and Feingold KR (1993) Tumor necrosis factor mediates the effects of endotoxin on cholesterol and triglyceride metabolism in mice. Endocrinology, 132, 2246–2253.

    Article  PubMed  CAS  Google Scholar 

  • Memon RA, Holleran WM, Moser AH, Seki T, Uchida Y, Fuller J, Shigenaga JK, Grunfeld C and Feingold KR (1998) Endotoxin and cytokines increase hepatic sphingolipid biosynthesis and produce lipoproteins enriched in ceramides and sphingomyelin. Arterioscler Thromb Vasc Biol, 18, 1257–1265.

    PubMed  CAS  Google Scholar 

  • Memon RA, Holleran WM, Uchida Y, Moser AH, Grunfeld C and Feingold KR (2001) Regulation of sphingolipid and glycosphingolipid metabolism in extrahepatic tissues by endotoxin. J Lipid Res, 42, 452–459.

    PubMed  CAS  Google Scholar 

  • Merrill AH, Jr., Nixon DW and Williams RD (1985) Activities of serine palmitoyltransferase (3-ketosphinganine synthase) in microsomes from different rat tissues. J Lipid Res, 26, 617–622.

    PubMed  CAS  Google Scholar 

  • Merrill AH, Jr., Sullards MC, Allegood JC, Kelly, S. and Wang, E. (2005) Sphingolipidomics: High-throughput, structure-specific and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry, Methods, 36, 207–224.

    Article  PubMed  CAS  Google Scholar 

  • Merrill AH, Jr., Wang E and Mullins RE (1988) Kinetics of long-chain (sphingoid) base biosynthesis in intact LM cells: effects of varying the extracellular concentrations of serine and fatty acid precursors of this pathway. Biochemistry, 27, 340–345.

    Article  PubMed  CAS  Google Scholar 

  • Messmer TO, Wang E, Stevens VL and Merrill AH, Jr. (1989) Sphingolipid biosynthesis by rat liver cells: effects of serine, fatty acids and lipoproteins. J Nutr, 119, 534–538.

    PubMed  CAS  Google Scholar 

  • Miyake Y, Kozutsumi Y, Nakamura S, Fujita T and Kawasaki T (1995) Serine palmitoyltransferase is the primary target of a sphingosine-like immunosuppressant, ISP-1/myriocin. Biochem Biophys Res Commun, 211, 396–403.

    Article  PubMed  CAS  Google Scholar 

  • Nagiec MM, Baltisberger JA, Wells GB, Lester RL and Dickson RC (1994) The LCB2 gene of Saccharomyces and the related LCB1 gene encode subunits of serine palmitoyltransferase, the initial enzyme in sphingolipid synthesis. Proc Natl Acad Sci U S A, 91, 7899–7902.

    Article  PubMed  CAS  Google Scholar 

  • Nagiec MM, Lester RL and Dickson RC (1996) Sphingolipid synthesis: identification and characterization of mammalian cDNAs encoding the Lcb2 subunit of serine palmitoyltransferase. Gene, 177, 237–241.

    Article  PubMed  CAS  Google Scholar 

  • Park TS, Panek RL, Mueller SB, Hanselman JC, Rosebury WS, Robertson AW, Kindt EK, Homan R, Karathanasis SK, Rekhter MD. (2004) Inhibition of sphingomyelin synthesis reduces atherogenesis in apolipoprotein E-knockout mice. Circulation, 110, 3465–3471.

    Article  PubMed  CAS  Google Scholar 

  • Paumen MB, Ishida Y, Muramatsu M, Yamamoto M and Honjo T (1997) Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitate-induced apoptosis. J Biol Chem, 272, 3324–3329.

    Article  PubMed  CAS  Google Scholar 

  • Perry DK, Carton J, Shah AK, Meredith F, Uhlinger DJ and Hannun YA (2000) Serine palmitoyltransferase regulates de novo ceramide generation during etoposide-induced apoptosis. J Biol Chem, 275, 9078–9084.

    Article  PubMed  CAS  Google Scholar 

  • Pinto WJ, Srinivasan B, Shepherd S, Schmidt A, Dickson RC and Lester RL (1992) Sphingolipid long-chain-base auxotrophs of Saccharomyces cerevisiae: genetics, physiology, and a method for their selection. J Bacteriol, 174, 2565–2574.

    PubMed  CAS  Google Scholar 

  • Reynolds CP, Maurer BJ and Kolesnick RN (2004) Ceramide synthesis and metabolism as a target for cancer therapy. Cancer Lett, 206, 169–180.

    Article  PubMed  CAS  Google Scholar 

  • Ridgway ND and Merriam DL (1995) Metabolism of short-chain ceramide and dihydroceramide analogues in Chinese hamster ovary (CHO) cells. Biochim Biophys Acta, 1256, 57–70.

    PubMed  Google Scholar 

  • Rotta LN, Da Silva CG, Perry ML and Trindade VM (1999) Undernutrition decreases serine palmitoyltransferase activity in developing rat hypothalamus. Ann Nutr Metab, 43, 152–158.

    Article  PubMed  CAS  Google Scholar 

  • Sawamura N, Ko M, Yu W, Zou K, Hanada K, Suzuki T, Gong JS, Yanagisawa K and Michikawa M (2004) Modulation of amyloid precursor protein cleavage by cellular sphingolipids. J Biol Chem, 279, 11984–11991.

    Article  PubMed  CAS  Google Scholar 

  • Scarlatti F, Bauvy C, Ventruti A, Sala G, Cluzeaud F, Vandewalle A, Ghidoni R and Codogno P (2004) Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1. J Biol Chem, 279, 18384–18391.

    Article  PubMed  CAS  Google Scholar 

  • Scarlatti F, Sala G, Somenzi G, Signorelli P, Sacchi N and Ghidoni R (2003) Resveratrol induces growth inhibition and apoptosis in metastatic breast cancer cells via de novo ceramide signaling. Faseb J, 17, 2339–2341.

    PubMed  CAS  Google Scholar 

  • Shimabukuro M, Higa M, Zhou YT, Wang MY, Newgard CB and Unger RH (1998) Lipoapoptosis in beta-cells of obese prediabetic fa/fa rats. Role of serine palmitoyltransferase overexpression. J Biol Chem, 273, 32487–32490.

    Article  PubMed  CAS  Google Scholar 

  • Sims KJ, Spassieva SD, Voit EO and Obeid LM (2004) Yeast sphingolipid metabolism: clues and connections. Biochem Cell Biol, 82, 45–61.

    Article  PubMed  CAS  Google Scholar 

  • Stoffel W, LeKim D and Sticht G (1968) Biosynthesis of dihydrosphingosine in vitro. Hoppe Seylers Z Physiol Chem, 349, 664–670.

    PubMed  CAS  Google Scholar 

  • Tanno O, Ota Y, Kitamura N, Katsube T and Inoue S (2000) Nicotinamide increases biosynthesis of ceramides as well as other stratum corneum lipids to improve the epidermal permeability barrier. Br J Dermatol, 143, 524–531.

    Article  PubMed  CAS  Google Scholar 

  • Triola G, Fabrias G, Dragusin M, Niederhausen L, Broere R, Llebaria A and van Echten-Deckert G (2004) Specificity of the dihydroceramide desaturase inhibitor N-[(1R,2S)-2-hydroxy-1-hydroxymethyl-2-(2-tridecy1-1-cyclopropenyl)ethyl] o ctanamide (GT11) in primary cultured cerebellar neurons. Mol Pharmacol, 66, 1671–1678.

    Article  PubMed  CAS  Google Scholar 

  • van Echten-Deckert G, Giannis A, Schwarz A, Futerman AH and Sandhoff K (1998) 1-Methylthiodihydroceramide, a novel analog of dihydroceramide, stimulates sphinganine degradation resulting in decreased de novo sphingolipid biosynthesis. J Biol Chem, 273, 1184–1191.

    Article  PubMed  Google Scholar 

  • van Echten-Deckert G, Zschoche A, Bar T, Schmidt RR, Raths A, Heinemann T and Sandhoff K (1997) cis-4-Methylsphingosine decreases sphingolipid biosynthesis by specifically interfering with serine palmitoyltransferase activity in primary cultured neurons. J Biol Chem, 272, 15825–15833.

    Article  PubMed  Google Scholar 

  • Wang H, Charles AG, Frankel AJ and Cabot MC (2003) Increasing intracellular ceramide: an approach that enhances the cytotoxic response in prostate cancer cells. Urology 61:1047–52.

    Article  PubMed  Google Scholar 

  • Wang H, Maurer BJ, Reynolds CP and Cabot MC (2001) N-(4-hydroxyphenyl)retinamide elevates ceramide in neuroblastoma cell lines by coordinate activation of serine palmitoyltransferase and ceramide synthase. Cancer Res, 61, 5102–5105.

    PubMed  CAS  Google Scholar 

  • Weiss B and Stoffel W (1997) Human and murine serine-palmitoyl-CoA transferase—cloning, expression and characterization of the key enzyme in sphingolipid synthesis. Eur J Biochem, 249, 239–247.

    Article  PubMed  CAS  Google Scholar 

  • Williams RD, Wang E and Merrill AH, Jr. (1984) Enzymology of long-chain base synthesis by liver: characterization of serine palmitoyltransferase in rat liver microsomes. Arch Biochem Biophys, 228, 282–291.

    Article  PubMed  CAS  Google Scholar 

  • Worgall TS, Juliano RA, Seo T, Deckelbaum RJ (2004) Ceramide synthesis correlates with the posttranscriptional regulation of the sterol-regulatory element-binding protein. Arterioscler Thromb Vasc Biol, 24, 943–948.

    Article  PubMed  CAS  Google Scholar 

  • Yamaji-Hasegawa A, Takahashi A, Tetsuka Y, Senoh Y and Kobayashi T (2005) Fungal metabolite sulfamisterin suppresses sphingolipid synthesis through inhibition of serine palmitoyltransferase. Biochemistry, 44, 268–277.

    Article  PubMed  CAS  Google Scholar 

  • Yasuda S, Nishijima M and Hanada K (2003) Localization, topology, and function of the LCB1 subunit of serine palmitoyltransferase in mammalian cells. J Biol Chem, 278, 4176–4183.

    Article  PubMed  CAS  Google Scholar 

  • Zaman Z, Jordan PM and Akhtar M (1973) Mechanism and stereochemistry of the 5-aminolaevulinate synthetase reaction. Biochem J, 135, 257–263.

    PubMed  CAS  Google Scholar 

  • Zhang K, Showalter M, Revollo J, Hsu FF, Turk J, Beverley SM (2003) Sphingolipids are essential for differentiation but not growth in Leishmania. EMBO J, 22, 6016–6026.

    Article  PubMed  CAS  Google Scholar 

  • Zweerink MM, Edison AM, Wells GB, Pinto W and Lester RL (1992) Characterization of a novel, potent, and specific inhibitor of serine palmitoyltrans-ferase. J Biol Chem, 267, 25032–25038.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Wei, J. et al. (2006). Serine Palmitoyltransferase. In: Hirabayashi, Y., Igarashi, Y., Merrill, A.H. (eds) Sphingolipid Biology. Springer, Tokyo. https://doi.org/10.1007/4-431-34200-1_2

Download citation

Publish with us

Policies and ethics