Skip to main content

The Role of Lipid Rafts in Axon Growth and Guidance

  • Chapter
Sphingolipid Biology
  • 3264 Accesses

Summary

Nervous system functions depend on the neuronal networks formed in part by axons. During development, axons migrate long distances to reach particular targets. A variety of environmental cues regulate and guide axon elongation by binding to relevant receptors expressed on the axonal growth cone at its tip. Activated receptors generate specific intracellular signals in a subcellular area of the growth cone, thereby controlling its directional motility. Recent work identified lipid rafts, or cholesterol- and glycosphingolipid- enriched microdomains, in the cell membrane a possible sited for the organization of spatially defined signals. For example, to stimulate axon elongation, cell adhesion molecules require functional rafts in the growth cone periphery. An extracellular gradient of axon guidance cues can induce growth cone turning by recruiting specific receptors to rafts and activating their downstream signals in a polarized manner. This chapter will examine the role of lipid rafts in mediating the directional motility of growth cones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  • Beck S, Sakurai T, Eustace BK, Beste G, Schier R, Rudert F, Jay DG (2002) Fluorophore-assisted light inactivation: a high-throughput tool for direct target validation of proteins. Proteomics, 2, 247–255.

    Article  PubMed  CAS  Google Scholar 

  • Bixby JL, Zhang R (1990) Purified N-cadherin is a potent substrate for the rapid induction of neurite outgrowth. J Cell Biol, 110, 1253–1260.

    Article  PubMed  CAS  Google Scholar 

  • Bozyczko D, Horwitz AF (1986) The participation of a putative cell surface receptor for laminin and fibronectin in peripheral neurite extension. J Neurosci, 6, 1241–1251.

    PubMed  CAS  Google Scholar 

  • Buchstaller A, Jay DG (2000) Micro-scale chromophore-assisted laser inactivation of nerve growth cone proteins. Microsc Res Tech, 48, 97–106.

    Article  PubMed  CAS  Google Scholar 

  • Doherty P, Fruns M, Seaton P, Dickson G, Barton CH, Sears TA, Walsh FS (1990) A threshold effect of the major isoforms of NCAM on neurite outgrowth. Nature, 343, 464–466.

    Article  PubMed  CAS  Google Scholar 

  • Edelman GM, Murray BA, Mege RM, Cunningham BA, Gallin WJ (1987) Cellular expression of liver and neural cell adhesion molecules after transfection with their cDNAs results in specific cell-cell binding. Proc Natl Acad Sci U S A, 84, 8502–8506.

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Mouton C, Lacalle RA, Mira E, Jimenez-Baranda S, Barber DF, Carrera AC, Martinez AC, Manes S (2004) Dynamic redistribution of raft domains as an organizing platform for signaling during cell chemotaxis. J Cell Biol, 164, 759–768.

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Mouton C, Abad JL, Mira E, Lacalle RA, Gallardo E, Jimenez-Baranda S, Illa I, Bernad A, Manes S, Martinez AC (2001) Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization. Proc Natl Acad Sci U S A, 98, 9642–9647.

    Article  PubMed  CAS  Google Scholar 

  • Gordon-Weeks PR (2000) Neuronal growth cones. Cambridge, UK; New York: Cambridge University Press.

    Google Scholar 

  • Grumet M, Edelman GM (1988) Neuron-glia cell adhesion molecule interacts with neurons and astroglia via different binding mechanisms. J Cell Biol, 106, 487–503.

    Article  PubMed  CAS  Google Scholar 

  • Guirland C, Suzuki S, Kojima M, Lu B, Zheng JQ (2004) Lipid rafts mediate chemotropic guidance of nerve growth cones. Neuron, 42, 51–62.

    Article  PubMed  CAS  Google Scholar 

  • Herincs Z, Corset V, Cahuzac N, Furne C, Castellani V, Hueber AO, Mehlen P (2005) DCC association with lipid rafts is required for netrin-1-mediated axon guidance. J Cell Sci, 118, 1687–1692.

    Article  PubMed  CAS  Google Scholar 

  • Huber AB, Kolodkin AL, Ginty DD, Cloutier JF (2003) Signaling at the Growth Cone: Ligand-Receptor Complexes and the Control of Axon Growth and Guidance. Annu Rev Neurosci, 26, 509–563.

    Article  PubMed  CAS  Google Scholar 

  • Kamiguchi H, Lemmon V (2000) Recycling of the cell adhesion molecule L1 in axonal growth cones. J Neurosci, 20, 3676–3686.

    PubMed  CAS  Google Scholar 

  • Kamiguchi H, Yoshihara F (2001) The role of endocytic L1 trafficking in polarized adhesion and migration of nerve growth cones. J Neurosci, 21, 9194–9203.

    PubMed  CAS  Google Scholar 

  • Kamiguchi H, Long KE, Pendergast M, Schaefer AW, Rapoport I, Kirchhausen T, Lemmon V (1998) The neural cell adhesion molecule L1 interacts with the AP-2 adaptor and is endocytosed via the clathrin-mediated pathway. J Neurosri, 18, 5311–5321.

    CAS  Google Scholar 

  • Khanna KV, Whaley KJ, Zeitlin L, Moench TR, Mehrazar K, Cone RA, Liao Z, Hildreth JE, Hoen TE, Shultz L, Markham RB (2002) Vaginal transmission of cell-associated HIV-1 in the mouse is blocked by a topical, membrane-modifying agent. J Clin Invest, 109, 205–211.

    Article  PubMed  CAS  Google Scholar 

  • Lamoureux P, Buxbaum RE, Heidemann SR (1989) Direct evidence that growth cones pull. Nature, 340, 159–162.

    Article  PubMed  CAS  Google Scholar 

  • Lemmon V, Farr KL, Lagenaur C (1989) L1-mediated axon outgrowth occurs via a homophilic binding mechanism. Neuron, 2, 1597–1603.

    Article  PubMed  CAS  Google Scholar 

  • Lin CH, Forscher P (1995) Growth cone advance is inversely proportional to retrograde F-actin flow. Neuron, 14, 763–771.

    Article  PubMed  CAS  Google Scholar 

  • Manes S, Mira E, Gomez-Mouton C, Lacalle RA, Keller P, Labrador JP, Martinez AC (1999) Membrane raft microdomains mediate front-rear polarity in migrating cells. Embo J, 18, 6211–6220.

    Article  PubMed  CAS  Google Scholar 

  • Nakai Y, Kamiguchi H (2002) Migration of nerve growth cones requires detergent-resistant membranes in a spatially defined and substrate-dependent manner. J Cell Biol, 159, 1097–1108.

    Article  PubMed  CAS  Google Scholar 

  • Niethammer P, Delling M, Sytnyk V, Dityatev A, Fukami K, Schachner M (2002) Cosignaling of NCAM via lipid rafts and the FGF receptor is required for neu-ritogenesis. J Cell Biol, 157, 521–532.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura K, Yoshihara F, Tojima T, Ooashi N, Yoon W, Mikoshiba K, Bennett V, Kamiguchi H (2003) L1-dependent neuritogenesis involves ankyrinB that mediates L1-CAM coupling with retrograde actin flow. J Cell Biol, 163, 1077–1088.

    Article  PubMed  CAS  Google Scholar 

  • Olive S, Dubois C, Schachner M, Rougon G (1995) The F3 neuronal glycosyl-phosphatidylinositol-linked molecule is localized to glycolipid-enriched membrane subdomains and interacts with L1 and fyn kinase in cerebellum. J Neurochem, 65, 2307–2317.

    Article  PubMed  CAS  Google Scholar 

  • Ren Q, Bennett V (1998) Palmitoylation of neurofascin at a site in the membrane-spanning domain highly conserved among the L1 family of cell adhesion molecules. J Neurochem, 70, 1839–1849.

    Article  PubMed  CAS  Google Scholar 

  • Schaefer AW, Kamei Y, Kamiguchi H, Wong EV, Rapoport I, Kirchhausen T, Beach CM, Landreth G, Lemmon SK, Lemmon V (2002) L1 endocytosis is controlled by a phosphorylation-dephosphorylation cycle stimulated by outside-in signaling by L1. J Cell Biol, 157, 1223–1232.

    Article  PubMed  CAS  Google Scholar 

  • Seveau S, Eddy RJ, Maxfield FR, Pierini LM (2001) Cytoskeleton-dependent membrane domain segregation during neutrophil polarization. Mol Biol Cell, 12, 3550–3562.

    PubMed  CAS  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature, 387, 569–572.

    Article  PubMed  CAS  Google Scholar 

  • Suter DM, Forscher P (2000) Substrate-cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance. J Neurobiol, 44, 97–113.

    Article  PubMed  CAS  Google Scholar 

  • Takeichi M (1991) Cadherin cell adhesion receptors as a morphogenetic regulator. Science, 251, 1451–1455.

    Article  PubMed  CAS  Google Scholar 

  • Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science, 274, 1123–1133.

    Article  PubMed  CAS  Google Scholar 

  • Tomaselli KJ, Reichardt LF, Bixby JL (1986) Distinct molecular interactions mediate neuronal process outgrowth on non-neuronal cell surfaces and extracellular matrices. J Cell Biol, 103, 2659–2672.

    Article  PubMed  CAS  Google Scholar 

  • van Buul JD, Voermans C, van Gelderen J, Anthony EC, van der Schoot CE, Hordijk PL (2003) Leukocyte-endothelium interaction promotes SDF-1-dependent polarization of CXCR4. J Biol Chem, 278, 30302–30310.

    Article  PubMed  CAS  Google Scholar 

  • Zhao M, Pu J, Forrester JV, McCaig CD (2002) Membrane lipids, EGF receptors, and intracellular signals colocalize and are polarized in epithelial cells moving directionally in a physiological electric field. Faseb J, 16, 857–859.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Kamiguchi, H. (2006). The Role of Lipid Rafts in Axon Growth and Guidance. In: Hirabayashi, Y., Igarashi, Y., Merrill, A.H. (eds) Sphingolipid Biology. Springer, Tokyo. https://doi.org/10.1007/4-431-34200-1_19

Download citation

Publish with us

Policies and ethics