Skip to main content

Close Interrelationship of Sphingomyelinase and Caveolin in Triton X-100-lnsoluble Membrane Microdomains

  • Chapter
Sphingolipid Biology

Summary

Much attention has been paid to the roles of sphingomyelin (SM) metabolism in the regulation of various cell functions such as cell growth, differentiation and apoptosis. Sphingomyelinase (SMase) catalyzes the first step of SM-metabolizing pathways that generate the bioactive metabolite, ceramide. SMase present in membrane microdomains, raft and caveolae may be involved in the agonist-mediated events. However, it is still unclear which molecular species of SMase is stimulated by an agonist to produce ceramide in membrane microdomains, and how agonist-sensitive SMase and SM are topologically localized within the micro-domains. Here, we first show the close interaction between neutral SMase and caveolin 1 in 1% Triton X-100-insoluble fractions of plasma membranes isolated from adult rat resting liver and rapidly growing rat ascites hepatoma, AH 7974 cells. Then, we describe the connection between acid SMase and caveolin 2 in cell differentiation or apoptosis induced by all-trans retinoic acid. Finally, we discuss the possible roles for caveolins with respect to the topological distribution of SMase and SM in caveolae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4. References

  • Andrieu-Abadie, N., and Levade, T. (2002) Sphingomyelin hydrolysis during apoptosis. Biochim Biophys Acta, 1585, 126–134.

    PubMed  CAS  Google Scholar 

  • Bernardo, K., Krut, O., Wiegmann, K., Kreder, D., Micheli, M., Schafer, R., Sickman, A., Schmidt, W. E., Schroder, J. M., Meyer, H. E., et al. (2000) Purification and characterization of a magnesium-dependent neutral sphingomyelinase from bovine brain. J Biol Chem, 275, 7641–7647.

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain, L. H. (2004) Detergents as tools for the purification and classification of lipid rafts. FEBS Lett, 559, 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Couet, J., Li, S., Okamoto, T., Ikezu, T., and Lisanti, M. P. (1997) Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem, 272, 6525–6533.

    Article  PubMed  CAS  Google Scholar 

  • Dobrowsky, R. T. (2000) Sphingolipid signalling domains floating on rafts or buried in caves? Cell Signal 12, 81–90.

    Article  PubMed  CAS  Google Scholar 

  • Fantini, J. (2003) How sphingolipids bind and shape proteins: molecular basis of lipid-protein interactions in lipid shells, rafts and related biomembrane domains. Cell Mol Life Sci, 60, 1027–1032.

    PubMed  CAS  Google Scholar 

  • Fielding, C. J., and Fielding, P. E. (2000). Cholesterol and caveolae: structural and functional relationships. Biochim Biophys Acta, 1529, 210–222.

    PubMed  CAS  Google Scholar 

  • Hannun, Y. A., Luberto, C., and Argraves, K. M. (2001) Enzymes of sphingolipid metabolism: from modular to integrative signaling. Biochemistry, 40, 4893–4903.

    Article  PubMed  CAS  Google Scholar 

  • Herget, T., Esdar, C., Oehrlein, S. A., Heinrich, M., Schutze, S., Maelicke, A., and van Echten-Deckert, G. (2000) Production of ceramides causes apoptosis during early neural differentiation in vitro. J Biol Chem, 275, 30344–30354.

    Article  PubMed  CAS  Google Scholar 

  • Kiyokawa, E., Baba, T., Otsuka, N., Makino, A., Ohno, S., and Kobayashi, T. (2005) Spatial and functional heterogeneity of sphingolipid-rich membrane domains. J Biol Chem, 280, 24072–24084.

    Article  PubMed  CAS  Google Scholar 

  • Koizumi, K., Tamiya-Koizumi, K., Fujii, T., and Kiyohide, K. (1977) Phospholipids of plasma membranes isolated from rat ascites hepatomas and from normal rat liver. Cell Structure and Function, 2, 145–153.

    Article  CAS  Google Scholar 

  • Koval, M., and Pagano, R. E. (1991) Intracellular transport and metabolism of sphingomyelin. Biochim Biophys Acta, 1082, 113–125.

    PubMed  CAS  Google Scholar 

  • Levade, T., and Jaffrezou, J. P. (1999). Signalling sphingomyelinases: which, where, how and why? Biochim Biophys Acta, 1438, 1–17.

    PubMed  CAS  Google Scholar 

  • Lucero, H. A., and Robbins, P. W. (2004) Lipid rafts-protein association and the regulation of protein activity. Arch Biochem Biophys, 426, 208–224.

    Article  PubMed  CAS  Google Scholar 

  • Marchesini, N., Osta, W., Bielawski, J., Luberto, C., Obeid, L. M., and Hannun, Y. A. (2004). Role for mammalian neutral sphingomyelinase 2 in confluence-induced growth arrest of MCF7 cells. J Biol Chem, 279, 25101–25111.

    Article  PubMed  CAS  Google Scholar 

  • Megha, and London, E. (2004) Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function. J Biol Chem, 279, 9997–10004.

    PubMed  CAS  Google Scholar 

  • Mizutani, Y., Tamiya-Koizumi, K., Nakamura, N., Kobayashi, M., Hirabayashi, Y., and Yoshida, S. (2001) Nuclear localization of neutral sphingomyelinase 1: biochemical and immunocytochemical analyses. J Cell Sci, 114, 3727–3736.

    PubMed  CAS  Google Scholar 

  • Murate, T., Suzuki, M., Hattori, M., Takagi, A., Kojima, T., Tanizawa, T., Asano, H., Hotta, T., Saito, H., Yoshida, S., and Tamiya-Koizumi, K. (2002) Up-regulation of acid sphingomyelinase during retinoic acid-induced myeloid differentiation of NB4, a human acute promyelocytic leukemia cell line. J Biol Chem, 277, 9936–9943.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto, T., Schlegel, A., Scherer, P. E., and Lisanti, M. P. (1998) Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J Biol Chem, 273, 5419–5422.

    Article  PubMed  CAS  Google Scholar 

  • Ramstedt, B., and Slotte, J. P. (2002) Membrane properties of sphingomyelins. FEBS Lett, 531, 33–37.

    Article  PubMed  CAS  Google Scholar 

  • Sankaram, M. B., and Thompson, T. E. (1990) Interaction of cholesterol with various glycerophospholipids and sphingomyelin. Biochemistry, 29, 10670–10675.

    Article  PubMed  CAS  Google Scholar 

  • Slotte, J. P. (1999) Sphingomyelin-cholesterol interactions in biological and model membranes. Chem Phys Lipids, 102, 13–27.

    Article  PubMed  CAS  Google Scholar 

  • Stoffel, W., Jenke, B., Block, B., Zumbansen, M., and Koebke, J. (2005) Neutral sphingomyelinase 2 (smpd3) in the control of postnatal growth and development. Proc Natl Acad Sci U S A, 102, 4554–4559.

    Article  PubMed  CAS  Google Scholar 

  • Tamiya-Koizumi, K., and Kojima, K. (1986) Activation of magnesium-dependent, neutral sphingomyelinase by phosphatidylserine. J Biochem (Tokyo), 99, 1803–1806.

    CAS  Google Scholar 

  • Tsugane, K., Tamiya-Koizumi, K., Nagino, M., Nimura, Y., and Yoshida, S. (1999). A possible role of nuclear ceramide and sphingosine in hepatocyte apoptosis in rat liver. J Hepatol, 31, 8–17.

    Article  PubMed  CAS  Google Scholar 

  • Veldman, R. J., Maestre, N., Aduib, O. M., Medin, J. A., Salvayre, R., and Levade, T. (2001) A neutral sphingomyelinase resides in sphingolipid-enriched microdomains and is inhibited by the caveolin-scaffolding domain: potential implications in tumour necrosis factor signalling. Biochem J, 355, 859–868.

    PubMed  CAS  Google Scholar 

  • Virkamaki, A., Ueki, K., and Kahn, C. R. (1999) Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest, 103, 931–943.

    Article  PubMed  CAS  Google Scholar 

  • Yu, C., Alterman, M., and Dobrowsky, R. T. (2005) Ceramide displaces cholesterol from lipid rafts and decreases the association of the cholesterol binding protein caveolin-1. J Lipid Res, 46, 1678–1691.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Tamiya-Koizumi, K. et al. (2006). Close Interrelationship of Sphingomyelinase and Caveolin in Triton X-100-lnsoluble Membrane Microdomains. In: Hirabayashi, Y., Igarashi, Y., Merrill, A.H. (eds) Sphingolipid Biology. Springer, Tokyo. https://doi.org/10.1007/4-431-34200-1_17

Download citation

Publish with us

Policies and ethics