Skip to main content

Overview of Acid and Neutral Sphingomyelinases in Cell Signaling

  • Chapter
Book cover Sphingolipid Biology

Summary

Ceramide, which forms through the activation of sphingomyelinases (SMases), is as a bioactive lipid that mediates cell growth, differentiation, stress responses, and programmed cell death (apoptosis). Molecular and biochemical examinations to determine the role of these enzymes in ceramide-mediated cell signaling is possible with the recent availability of the cloned acid SMase (A-SMase) and neutral SMase (N-SMase). Here we review the recent experimental data and discuss its relevance for understanding the biochemical and molecular properties, regulation, mechanisms and roles of A-SMase and N-SMase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  • Adam-Klages S, Adam D, Wiegmann K, Struve S, Kolanus W, Schnei-der-Mergener J, Krönke M (1996) FAN, a novel WD-repeat protein, couples the p55 TNF-receptor to neutral sphingomyelinase. Cell, 86, 937–947.

    Article  PubMed  CAS  Google Scholar 

  • Adam D, Wiegmann K, Adam-Klages S, Ruff A, Krönke M (1996) A novel cyto-plasmic domain of the p55 tumor necrosis factor receptor initiates the neutral sphingomyelinase pathway. J Biol Chem, 271, 14617–14622.

    Article  PubMed  CAS  Google Scholar 

  • Alessenko AV, Bugrova AE, Dudnik LB (2004) Connection of lipid peroxide oxidation with the sphingomyelin pathway in the development of Alzheimer’s disease. Biochem Soc Trans, 32, 144–146.

    Article  PubMed  CAS  Google Scholar 

  • Amtmann E, Baader W, Zoller M (2003) Neutral sphingomyelinase inhibitor C11AG prevents lipopolysaccharide-induced macrophage activation. Drugs Exp Clin Res, 29, 5–13.

    PubMed  CAS  Google Scholar 

  • Ayasolla K, Khan M, Singh AK, Singh I (2004) Inflammatory mediator and beta-amyloid (25–35)-induced ceramide generation and iNOS expression are inhibited by vitamin E. Free Radic Biol Med, 37, 325–338.

    Article  PubMed  CAS  Google Scholar 

  • Barsacchi R, Perrotta C, Bulotta S, Moncada S, Borgese N, Clementi E (2003) Activation of endothelial nitric-oxide synthase by tumor necrosis factor-alpha: a novel pathway involving sequential activation of neutral sphingomyelinase, phosphatidylinositol-3’ kinase, and Akt. Mol Pharmacol, 63, 886–895.

    Article  PubMed  CAS  Google Scholar 

  • Bezombes C, Plo I, Mansat-De Mas V, Quillet-Mary A, Negre-Salvayre A, Laurent G, Jaffrezou JP (2001) Oxidative stress-induced activation of Lyn recruits sphingomyelinase and is requisite for its stimulation by Ara-C. Faseb J, 15, 1583–1585.

    PubMed  CAS  Google Scholar 

  • Charruyer A, Grazide S, Bezombes C, Muller S, Laurent G, Jaffrezou JP (2005) UV-C light induces raft-associated acid sphingomyelinase and JNK activation and translocation independently on a nuclear signal. J Biol Chem, 280, 19196–19204.

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee S (1999) Neutral sphingomyelinase: past, present and future. Chem Phys Lipids, 102, 79–96.

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee S, Han H, Rollins S, Cleveland T (1999) Molecular cloning, characterization, and expression of a novel human neutral sphingomyelinase. J Biol Chem, 274, 37407–37412.

    Article  PubMed  CAS  Google Scholar 

  • Czarny M, Liu J, Oh P, Schnitzer JE (2003) Transient mechanoactivation of neutral sphingomyelinase in caveolae to generate ceramide. J Biol Chem, 278, 4424–4430.

    Article  PubMed  CAS  Google Scholar 

  • da Veiga Pereira L, Desnick RJ, Adler DA, Disteche CM, Schuchman EH (1991) Regional assignment of the human acid sphingomyelinase gene (SMPD1) by PCR analysis of somatic cell hybrids and in situ hybridization to 11p15.1—p15.4. Genomics, 9, 229–234.

    Article  PubMed  Google Scholar 

  • Ferlinz K, Hurwitz R, Moczall H, Lansmann S, Schuchman EH, Sandhoff K (1997) Functional characterization of the N-glycosylation sites of human acid sphingomyelinase by site-directed mutagenesis. Eur J Biochem, 243, 511–517.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Ayala DJ, Martin SF, Barroso MP, Gomez-Diaz C, Villalba JM, Rod-riguez-Aguilera JC, Lopez-Lluch G, Navas P (2000) Coenzyme Q protects cells against serum withdrawal-induced apoptosis by inhibition of ceramide release and caspase-3 activation. Antioxid Redox Signal, 2, 263–275.

    PubMed  CAS  Google Scholar 

  • Garcia-Barros M, Lacorazza D, Petrie H, Haimovitz-Friedman A, Cardon-Cardo C, Nimer S, Fuks Z, Kolesnick R (2004) Host acid sphingomyelinase regulates microvascular function not tumor immunity. Cancer Res, 64, 8285–8291.

    Article  PubMed  CAS  Google Scholar 

  • Goni FM, Alonso A (2002) Sphingomyelinases: enzymology and membrane activity. FEBS Lett, 531, 38–46.

    Article  PubMed  CAS  Google Scholar 

  • Grassme H, Bock J, Kun J, Gulbins E (2002) Clustering of CD40 ligand is required to form a functional contact with CD40. J Biol Chem, 277, 30289–30299.

    Article  PubMed  CAS  Google Scholar 

  • Gulbins E, Grassme H (2002) Ceramide and cell death receptor clustering. Biochim Biophys Acta, 1585, 139–145.

    PubMed  CAS  Google Scholar 

  • Gulbins E, Kolesnick R (2002) Acid sphingomyelinase-derived ceramide signaling in apoptosis. Subcell Biochem, 36, 229–244.

    PubMed  CAS  Google Scholar 

  • Hayashi Y, Kiyono T, Fujita M, Ishibashi M (1997) ccal is required for formation of growth-arrested confluent monolayer of rat 3Y1 cells. J Biol Chem, 272, 18082–18086.

    Article  PubMed  CAS  Google Scholar 

  • Heinrich M, Neumeyer J, Jakob M, Hallas C, Tchikov V, Winoto-Morbach S, Wickel M, Schneider-Brachert W, Trauzold A, Hethke A, Schutze S (2004) Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and-3 activation. Cell Death Differ, 11, 550–563.

    Article  PubMed  CAS  Google Scholar 

  • Heinrich M, Wickel M, Schneider-Brachert W, Sandberg C, Gahr J, Schwandner R, Weber T, Saftig P, Peters C, Brunner J, Kronke M, Schutze S (1999) Cathepsin D targeted by acid sphingomyelinase-derived ceramide. Embo J, 18, 5252–5263.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann K, Tomiuk S, Wolff G, Stoffel W (2000) Cloning and characterization of the mammalian brain-specific, Mg2+-dependent neutral sphingomyelinase. Proc Natl Acad Sci USA, 97, 5895–5900.

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Yang J, Shen J, Chen FF, Yu Y (2005) Sphingolipids are involved in N-methyl-N’-nitro-N-nitrosoguanidine-induced epidermal growth factor receptor clustering. Biochem Biophys Res Commun, 330, 430–438.

    Article  PubMed  CAS  Google Scholar 

  • Jana A, Pahan K (2004) Fibrillar amyloid-beta peptides kill human primary neurons via NADPH oxidase-mediated activation of neutral sphingomyelinase. Implications for Alzheimer’s disease. J Biol Chem, 279, 51451–51459.

    Article  PubMed  CAS  Google Scholar 

  • Karakashian AA, Giltiay NV, Smith GM, Nikolova-Karakashian MN (2004) Expression of neutral sphingomyelinase-2 (NSMase-2) in primary rat hepatocytes modulates IL-beta-induced JNK activation. Faseb J, 18, 968–970.

    PubMed  CAS  Google Scholar 

  • Kashkar H, Wiegmann K, Yazdanpanah B, Haubert D, Kronke M (2005) Acid Sphingomyelinase Is Indispensable for UV Light-induced Bax Conformation-al Change at the Mitochondrial Membrane. J Biol Chem, 280, 20804–20813.

    Article  PubMed  CAS  Google Scholar 

  • Kirschnek S, Paris F, Weller M, Grassme H, Ferlinz K, Riehle A, Fuks Z, Kolesnick R, Gulbins E (2000) CD95-mediated apoptosis in vivo involves acid sphingomyelinase. J Biol Chem, 275, 27316–27323.

    PubMed  CAS  Google Scholar 

  • Kolmakova A, Kwiterovich P, Virgil D, Alaupovic P, Knight-Gibson C, Martin SF, Chatterjee S (2004) Apolipoprotein C-I induces apoptosis in human aortic smooth muscle cells via recruiting neutral sphingomyelinase. Arterioscler Thromb Vasc Biol, 24, 264–269.

    Article  PubMed  CAS  Google Scholar 

  • Kreder D, Krut O, Adam-Klages S, Wiegmann K, Scherer G, Plitz T, Jensen JM, Proksch E, Steinmann J, Pfeffer K, Kronke M (1999) Impaired neutral sphingomyelinase activation and cutaneous barrier repair in FAN-deficient mice. Embo J, 18, 2472–2479.

    Article  PubMed  CAS  Google Scholar 

  • Kronke M (1999) Involvement of sphingomyelinases in TNF signaling pathways. Chem Phys Lipids, 102, 157–166.

    Article  PubMed  CAS  Google Scholar 

  • Lacour S, Hammann A, Grazide S, Lagadic-Gossmann D, Athias A, Sergent O, Laurent G, Gambert P, Solary E, Dimanche-Boitrel MT (2004) Cisplatin-induced CD95 redistribution into membrane lipid rafts of HT29 human colon cancer cells. Cancer Res, 64, 3593–3598.

    Article  PubMed  CAS  Google Scholar 

  • Langmann T, Buechler C, Ries S, Schaeffler A, Aslanidis C, Schuierer M, Weiler M, Sandhoff K, de Jong PJ, Schmitz G (1999) Transcription factors Sp1 and AP-2 mediate induction of acid sphingomyelinase during monocytic differentiation. J Lipid Res, 40, 870–880.

    PubMed  CAS  Google Scholar 

  • Lee JT, Xu J, Lee JM, Ku G, Han X, Yang DI, Chen S, Hsu CY (2004) Amyloid-beta peptide induces oligodendrocyte death by activating the neutral sphingomyelinase-ceramide pathway. J Cell Biol, 164, 123–131.

    Article  PubMed  CAS  Google Scholar 

  • Levade T, Jaffrezou JP (1999) Signalling sphingomyelinases: which, where, how and why? Biochim Biophys Acta, 1438, 1–17.

    PubMed  CAS  Google Scholar 

  • Liu B, Andrieu-Abadie N, Levade T, Zhang P, Obeid LM, Hannun YA (1998) Glutathione regulation of neutral sphingomyelinase in tumor necrosis factor-alpha-induced cell death. J Biol Chem, 273, 11313–11320.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Lluch G, Barroso MP, Martin SF, Fernandez-Ayala DJ, Gomez-Diaz C, Villalba JM, Navas P (1999) Role of plasma membrane coenzyme Q on the regulation of apoptosis. Biofactors, 9, 171–177.

    PubMed  CAS  Google Scholar 

  • Lozano J, Morales A, Cremesti A, Fuks Z, Tilly JL, Schuchman E, Gulbins E, Kolesnick R (2001) Niemann-Pick Disease versus acid sphingomyelinase deficiency. Cell Death Differ, 8, 100–103.

    Article  PubMed  CAS  Google Scholar 

  • Luberto C, Hassler DF, Signorelli P, Okamoto Y, Sawai H, Boros E, Hazen-Martin DJ, Obeid LM, Hannun YA, Smith GK (2002) Inhibition of tumor necrosis factor-induced cell death in MCF7 by a novel inhibitor of neutral sphingomyelinase. J Biol Chem, 277, 41128–41139.

    Article  PubMed  CAS  Google Scholar 

  • Mansat-de Mas V, Bezombes C, Quillet-Mary A, Bettaieb A, D’Orgeix A D, Laurent G, Jaffrezou JP (1999) Implication of radical oxygen species in ceramide generation, c-Jun N-terminal kinase activation and apoptosis induced by daunorubicin. Mol Pharmacol, 56, 867–874.

    PubMed  CAS  Google Scholar 

  • Marchesini N, Hannun YA (2004) Acid and neutral sphingomyelinases: roles and mechanisms of regulation. Biochem Cell Biol, 82, 27–44.

    Article  PubMed  CAS  Google Scholar 

  • Marchesini N, Luberto C, Hannun YA (2003) Biochemical properties of mammalian neutral sphingomyelinase 2 and its role in sphingolipid metabolism. J Biol Chem, 278, 13775–13783.

    Article  PubMed  CAS  Google Scholar 

  • Marchesini N, Osta W, Bielawski J, Luberto C, Obeid LM, Hannun YA (2004) Role for mammalian neutral sphingomyelinase 2 in confluence-induced growth arrest of MCF7 cells. J Biol Chem, 279, 25101–25111.

    Article  PubMed  CAS  Google Scholar 

  • Newrzella D, Stoffel W (1992) Molecular cloning of the acid sphingomyelinase of the mouse and the organization and complete nucleotide sequence of the gene. Biol Chem Hoppe Seyler, 373, 1233–1238.

    PubMed  CAS  Google Scholar 

  • Newrzella D, Stoffel W (1996) Functional analysis of the glycosylation of murine acid sphingomyelinase. J Biol Chem, 271, 32089–32095.

    Article  PubMed  CAS  Google Scholar 

  • Nix M, Stoffel W (2000) Perturbation of membrane microdomains reduces mitogenic signaling and increases susceptibility to apoptosis after T cell receptor stimulation. Cell Death Differ, 7, 413–424.

    Article  PubMed  CAS  Google Scholar 

  • Rotolo JA, Zhang J, Donepudi M, Lee H, Fuks Z, Kolesnick R (2005) Caspase-dependent and-independent activation of acid sphingomyelinase signaling. J Biol Chem, 280, 26425–26434.

    Article  PubMed  CAS  Google Scholar 

  • Sawai H, Domae N, Nagan N, Hannun YA (1999) Function of the cloned putative neutral sphingomyelinase as lyso-platelet activating factor-phospholipase C. J Biol Chem, 274, 38131–38139.

    Article  PubMed  CAS  Google Scholar 

  • Sawai H, Hannun YA (1999) Ceramide and sphingomyelinases in the regulation of stress responses. Chem Phys Lipids, 102, 141–147.

    Article  PubMed  CAS  Google Scholar 

  • Sawai H, Okamoto Y, Luberto C, Mao C, Bielawska A, Domae N, Hannun YA (2000) Identification of ISC1 (YER019w) as inositol phosphosphingolipid phospholipase C in Saccharomyces cerevisiae. J Biol Chem, 275, 39793–39798.

    Article  PubMed  CAS  Google Scholar 

  • Schissel SL, Schuchman EH, Williams KJ, Tabas I (1996) Zn2+-stimulated sphingomyelinase is secreted by many cell types and is a product of the acid sphingomyelinase gene. J Biol Chem, 271, 18431–18436.

    Article  PubMed  CAS  Google Scholar 

  • Schneider-Brachert W, Tchikov V, Neumeyer J, Jakob M, Winoto-Morbach S, Held-Feindt J, Heinrich M, Merkel O, Ehrenschwender M, Adam D, Mentlein R, Kabelitz D, Schutze S (2004) Compartmentalization of TNF receptor 1 signaling: internalized TNF receptosomes as death signaling vesicles. Immunity, 21, 415–428.

    Article  PubMed  CAS  Google Scholar 

  • Schutze S, Machleidt T, Adam D, Schwandner R, Wiegmann K, Kruse ML, Heinrich M, Wickel M, Kronke M (1999) Inhibition of receptor internalization by monodansylcadaverine selectively blocks p55 tumor necrosis factor receptor death domain signaling. J Biol Chem, 274, 10203–10212.

    Article  PubMed  CAS  Google Scholar 

  • Schutze S, Potthoff K, Machleidt T, Berkovic D, Wiegmann K, Kronke M (1992) TNF activates NF-kappa B by phosphatidylcholine-specific phospholipase C-induced “acidic” sphingomyelin breakdown. Cell, 71, 765–776.

    Article  PubMed  CAS  Google Scholar 

  • Schwandner R, Wiegmann K, Bernardo K, Kreder D, Kronke M (1998) TNF receptor death domain-associated proteins TRADD and FADD signal activation of acid sphingomyelinase. J Biol Chem, 273, 5916–5922.

    Article  PubMed  CAS  Google Scholar 

  • Segui B, Andrieu-Abadie N, Adam-Klages S, Meilhac O, Kreder D, Garcia V, Bruno AP, Jaffrezou JP, Salvayre R, Kronke M, Levade T (1999) CD40 signals apoptosis through FAN-regulated activation of the sphingomye-lin-ceramide pathway. J Biol Chem, 274, 37251–37258.

    Article  PubMed  CAS  Google Scholar 

  • Segui B, Bezombes C, Uro-Coste E, Medin JA, Andrieu-Abadie N, Auge N, Brouchet A, Laurent G, Salvayre R, Jaffrezou JP, Levade T (2000) Stress-induced apoptosis is not mediated by endolysosomal ceramide. Faseb J, 14, 36–47.

    PubMed  CAS  Google Scholar 

  • Segui B, Cuvillier O, Adam-Klages S, Garcia V, Malagarie-Cazenave S, Leveque S, Caspar-Bauguil S, Coudert J, Salvayre R, Kronke M, Levade T (2001) Involvement of FAN in TNF-induced apoptosis. J Clin Invest, 108, 143–151.

    Article  PubMed  CAS  Google Scholar 

  • Stoffel W, Jenke B, Block B, Zumbansen M, Koebke J (2005) Neutral sphingomyelinase 2 (smpd3) in the control of postnatal growth and development. Proc Natl Acad Sci U S A, 102, 4554–4559.

    Article  PubMed  CAS  Google Scholar 

  • Tcherkasowa AE, Adam-Klages S, Kruse ML, Wiegmann K, Mathieu S, Kolanus W, Kronke M, Adam D (2002) Interaction with factor associated with neutral sphingomyelinase activation, a WD motif-containing protein, identifies receptor for activated C-kinase 1 as a novel component of the signaling pathways of the p55 TNF receptor. J Immunol, 169, 5161–5170.

    PubMed  Google Scholar 

  • Tomiuk S, Hofmann K, Nix M, Zumbansen M, Stoffel W (1998) Cloned mammalian neutral sphingomyelinase: functions in sphingolipid signaling? Proc Natl Acad Sci U S A, 95, 3638–3643.

    Article  PubMed  CAS  Google Scholar 

  • Veldman RJ, Maestre N, Aduib OM, Medin JA, Salvayre R, Levade T (2001) A neutral sphingomyelinase resides in sphingolipid-enriched microdomains and is inhibited by the caveolin-scaffolding domain: potential implications in tumour necrosis factor signalling. Biochem J, 355, 859–868.

    PubMed  CAS  Google Scholar 

  • Won JS, Im YB, Khan M, Singh AK, Singh I (2004) The role of neutral sphingomyelinase produced ceramide in lipopolysaccharide-mediated expression of inducible nitric oxide synthase. J Neurochem, 88, 583–593.

    Article  PubMed  CAS  Google Scholar 

  • Wong ML, Xie B, Beatini N, Phu P, Marathe S, Johns A, Gold PW, Hirsch E, Williams KJ, Licinio J, Tabas I (2000) Acute systemic inflammation up-regulates secretory sphingomyelinase in vivo: a possible link between inflammatory cytokines and atherogenesis. Proc Natl Acad Sci U S A, 97, 8681–8686.

    Article  PubMed  CAS  Google Scholar 

  • Yang DI, Yeh CH, Chen S, Xu J, Hsu CY (2004) Neutral sphingomyelinase activation in endothelial and glial cell death induced by amyloid beta-peptide. Neurobiol Dis, 17, 99–107.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura S, Banno Y, Nakashima S, Hayashi K, Yamakawa H, Sawada M, Sakai N, Nozawa Y (1999) Inhibition of neutral sphingomyelinase activation and ceramide formation by glutathione in hypoxic PC12 cell death. J Neurochem, 73, 675–683.

    Article  PubMed  CAS  Google Scholar 

  • Zumbansen M, Stoffel W (1997) Tumor necrosis factor alpha activates NF-kappaB in acid sphingomyelinase-deficient mouse embryonic fibroblasts. J Biol Chem, 272, 10904–10909.

    Article  PubMed  CAS  Google Scholar 

  • Zumbansen M, Stoffel W (2002) Neutral sphingomyelinase 1 deficiency in the mouse causes no lipid storage disease. Mol Cell Biol, 22, 3633–3638.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Zeidan, Y., Marchesini, N., Hannun, Y.A. (2006). Overview of Acid and Neutral Sphingomyelinases in Cell Signaling. In: Hirabayashi, Y., Igarashi, Y., Merrill, A.H. (eds) Sphingolipid Biology. Springer, Tokyo. https://doi.org/10.1007/4-431-34200-1_12

Download citation

Publish with us

Policies and ethics