Skip to main content

Generation of Signaling Molecules by De Novo Sphingolipid Synthesis

  • Chapter
Sphingolipid Biology

Summary

Sphingolipids are abundant components of cellular membranes in eukaryotic cells as well as potent signaling molecules. De novo sphingolipid biosynthesis begins with condensation of L-serine and palmitoyl-CoA, generating sphingoid bases, ceramide, and other species through a series of reactions. Ceramide can also be formed from free sphingoid bases, which has been termed the’ salvage’ pathway. Sphingolipids from both the de novo and salvage pathways increase with exposure of yeast or mammals to various stimuli such as Fas ligands, chemotherapeutic drugs, tumor necrosis factor-γ and heat stress, and then act as lipid second messengers mediating inflammatory responses, senescence, cell cycle arrest, apoptosis or stress responses. Therefore, generation of signaling molecules by de novo synthesis and/or salvage accounts not only for homeostasis, but also for several disorders resulting from aberrant sphingolipid accumulation or depletion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  • Basnakian, A. G., Ueda, N., Hong, X., Galitovsky, V. E., Yin, X., and Shah, S. V. (2005) Ceramide synthase is essential for endonuclease-mediated death of renal tubular epithelial cells induced by hypoxia-reoxygenation. Am J Physiol Renal Physiol, 288, F308–314.

    Article  PubMed  CAS  Google Scholar 

  • Batheja, A. D., Uhlinger, D. J., Carton, J. M., Ho, G., and D’Andrea, M. R. (2003) Characterization of serine palmitoyltransferase in normal human tissues. J Histochem Cytochem, 51, 687–696.

    PubMed  CAS  Google Scholar 

  • Becker, K. P., Kitatani, K., Idkowiak-Baldys, J., Bielawski, J., and Hannun, Y. A. (2005) Selective inhibition of juxtanuclear translocation of protein kinase C betaII by a negative feedback mechanism involving ceramide formed from the salvage pathway. J Biol Chem, 280, 2606–2612.

    Article  PubMed  CAS  Google Scholar 

  • Carton, J. M., Uhlinger, D. J., Batheja, A. D., Derian, C., Ho, G., Argenteri, D., and D’Andrea, M. R. (2003) Enhanced serine palmitoyltransferase expression in proliferating fibroblasts, transformed cell lines, and human tumors. J Histochem Cytochem, 51, 715–726.

    PubMed  CAS  Google Scholar 

  • Chalfant, C. E., Ogretmen, B., Galadari, S., Kroesen, B. J., Pettus, B. J., and Hannun, Y. A. (2001) FAS activation induces dephosphorylation of SR proteins; dependence on the de novo generation of ceramide and activation of protein phosphatase 1. J Biol Chem, 276, 44848–44855.

    Article  PubMed  CAS  Google Scholar 

  • Chalfant, C. E., Rathman, K., Pinkerman, R. L., Wood, R. E., Obeid, L. M., Ogretmen, B., and Hannun, Y. A. (2002) De novo ceramide regulates the alternative splicing of caspase 9 and Bcl-x in A549 lung adenocarcinoma cells. Dependence on protein phosphatase-1. J Biol Chem, 277, 12587–12595.

    Article  PubMed  CAS  Google Scholar 

  • Chavez, J. A., and Summers, S. A. (2003) Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes. Arch Biochem Biophys, 419, 101–109.

    Article  PubMed  CAS  Google Scholar 

  • Chigorno, V., Giannotta, C., Ottico, E., Sciannamblo, M., Mikulak, J., Prinetti, A., and Sonnino, S. (2005) Sphingolipid uptake by cultured cells: complex aggregates of cell sphingolipids with serum proteins and lipoproteins are rapidly catabolized. J Biol Chem, 280, 2668–2675.

    Article  PubMed  CAS  Google Scholar 

  • Chung, N., Jenkins, G., Hannun, Y. A., Heitman, J., and Obeid, L. M. (2000) Sphingolipids signal heat stress-induced ubiquitin-dependent proteolysis. J Biol Chem, 275, 17229–17232.

    Article  PubMed  CAS  Google Scholar 

  • Cowart, L. A., Okamoto, Y., Pinto, F. R., Gandy, J. L., Almeida, J. S., and Hannun, Y. A. (2003) Roles for sphingolipid biosynthesis in mediation of specific programs of the heat stress response determined through gene expression profiling. J Biol Chem, 278, 30328–30338.

    Article  PubMed  CAS  Google Scholar 

  • Dbaibo, G. S., El-Assaad, W., Krikorian, A., Liu, B., Diab, K., Idriss, N. Z., El-Sabban, M., Driscoll, T. A., Perry, D. K., and Hannun, Y. A. (2001) Ceramide generation by two distinct pathways in tumor necrosis factor alpha-induced cell death. FEBS Lett, 503, 7–12.

    Article  PubMed  CAS  Google Scholar 

  • Dedov, V. N., Dedova, I. V., and Nicholson, G. A. (2004) Hypoxia causes aggregation of serine palmitoyltransferase followed by non-apoptotic death of human lymphocytes. Cell Cycle, 3, 1271–1277.

    PubMed  CAS  Google Scholar 

  • Eto, M., Bennouna, J., Hunter, O. C., Hershberger, P. A., Kanto, T., Johnson, C. S., Lotze, M. T., and Amoscato, A. A. (2003) C16 ceramide accumulates following androgen ablation in LNCaP prostate cancer cells. Prostate, 57, 66–79.

    Article  PubMed  CAS  Google Scholar 

  • Farrell, A. M., Uchida, Y., Nagiec, M. M., Harris, I. R., Dickson, R. C., Elias, P. M., and Holleran, W. M. (1998) UVB irradiation up-regulates serine palmitoyltransferase in cultured human keratinocytes. J Lipid Res, 39, 2031–2038.

    PubMed  CAS  Google Scholar 

  • Gable, K., Slife, H., Bacikova, D., Monaghan, E., and Dunn, T. M. (2000) Tsc3p is an 80-amino acid protein associated with serine palmitoyltransferase and required for optimal enzyme activity. J Biol Chem, 275, 7597–7603.

    Article  PubMed  CAS  Google Scholar 

  • Gomez del Pulgar, T., Velasco, G., Sanchez, C., Haro, A., and Guzman, M. (2002) De novo-synthesized ceramide is involved in cannabinoid-induced apoptosis. Biochem J, 363, 183–188.

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Munoz, A. (1998) Modulation of cell signalling by ceramides. Biochim Biophys Acta, 1391, 92–109.

    PubMed  CAS  Google Scholar 

  • Grilley, M. M., Stock, S. D., Dickson, R. C., Lester, R. L., and Takemoto, J. Y. (1998) Syringomycin action gene SYR2 is essential for sphingolipid 4-hydroxylation in Saccharomyces cerevisiae. J Biol Chem, 273, 11062–11068.

    Article  PubMed  CAS  Google Scholar 

  • Han, G., Gable, K., Yan, L., Natarajan, M., Krishnamurthy, J., Gupta, S. D., Borovitskaya, A., Harmon, J. M., and Dunn, T. M. (2004) The topology of the Lcblp subunit of yeast serine palmitoyltransferase. J Biol Chem, 279, 53707–53716.

    Article  PubMed  CAS  Google Scholar 

  • Hanada, K. (2003) Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim Biophys Acta, 1632, 16–30.

    PubMed  CAS  Google Scholar 

  • Harris, I. R., Farrell, A. M., Grunfeld, C., Holleran, W. M., Elias, P. M., and Feingold, K. R. (1997) Permeability barrier disruption coordinately regulates mRNA levels for key enzymes of cholesterol, fatty acid, and ceramide synthesis in the epidermis. J Invest Dermatol, 109, 783–787.

    Article  PubMed  CAS  Google Scholar 

  • Jenkins, G. M., Cowart, L. A., Signorelli, P., Pettus, B. J., Chalfant, C. E., and Hannun, Y. A. (2002) Acute activation of de novo sphingolipid biosynthesis upon heat shock causes an accumulation of ceramide and subsequent dephosphorylation of SR proteins. J Biol Chem, 277, 42572–42578.

    Article  PubMed  CAS  Google Scholar 

  • Jenkins, G. M., and Hannun, Y. A. (2001) Role for de novo sphingoid base biosynthesis in the heat-induced transient cell cycle arrest of Saccharomyces cerevisiae. J Biol Chem, 276, 8574–8581.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, Q., Wong, J., Fyrst, H., Saba, J. D., and Ames, B. N. (2004) gamma-Tocopherol or combinations of vitamin E forms induce cell death in human prostate cancer cells by interrupting sphingolipid synthesis. Proc Natl Acad Sci U S A, 101, 17825–17830.

    Article  PubMed  CAS  Google Scholar 

  • Kitatani, K., Nemoto, M., Akiba, S., and Sato, T. (2002) Stimulation by de novo-synthesized ceramide of phospholipase A(2)-dependent cholesterol esterification promoted by the uptake of oxidized low-density lipoprotein in macrophages. Cell Signal, 14, 695–701.

    Article  PubMed  CAS  Google Scholar 

  • Kolesnick, R., and Fuks, Z. (2003) Radiation and ceramide-induced apoptosis. Oncogene, 22, 5897–5906.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y. Y., Han, T. Y., Giuliano, A. E., and Cabot, M. C. (2001) Ceramide glycosylation potentiates cellular multidrug resistance. Faseb J, 15, 719–730.

    Article  PubMed  CAS  Google Scholar 

  • Merrill, A. H., Jr., Liotta, D. C., and Riley, R. T. (1996a) Fumonisins: fungal toxins that shed light on sphingolipid function. Trends Cell Biol, 6, 218–223.

    Article  PubMed  CAS  Google Scholar 

  • Merrill, A. H., Jr., Wang, E., Vales, T. R., Smith, E. R., Schroeder, J. J., Menaldino, D. S., Alexander, C., Crane, H. M., Xia, J., Liotta, D. C., Meredith, F. I., and Riley, R. T. (1996b) Fumonisin toxicity and sphingolipid biosynthesis. Adv Exp Med Biol, 392, 297–306.

    PubMed  CAS  Google Scholar 

  • Miyake, Y., Kozutsumi, Y., Nakamura, S., Fujita, T., and Kawasaki, T. (1995) Serine palmitoyltransferase is the primary target of a sphingosine-like immunosuppressant, ISP-1/myriocin. Biochem Biophys Res Commun, 211, 396–403.

    Article  PubMed  CAS  Google Scholar 

  • Nagiec, M. M., Skrzypek, M., Nagiec, E. E., Lester, R. L., and Dickson, R. C. (1998) The LCB4 (YOR171c) and LCB5 (YLR260w) genes of Saccharomyces encode sphingoid long chain base kinases. J Biol Chem, 273, 19437–19442.

    Article  PubMed  CAS  Google Scholar 

  • Ogretmen, B., and Hannun, Y. A. (2004) Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer, 4, 604–616.

    Article  PubMed  CAS  Google Scholar 

  • Ogretmen, B., Pettus, B. J., Rossi, M. J., Wood, R., Usta, J., Szulc, Z., Bielawska, A., Obeid, L. M., and Hannun, Y. A. (2002) Biochemical mechanisms of the generation of endogenous long chain ceramide in response to exogenous short chain ceramide in the A549 human lung adenocarcinoma cell line. Role for endogenous ceramide in mediating the action of exogenous ceramide. J Biol Chem, 277, 12960–12969.

    Article  PubMed  CAS  Google Scholar 

  • Park, T. S., Panek, R. L., Mueller, S. B., Hanselman, J. C., Rosebury, W. S., Robertson, A. W., Kindt, E. K., Homan, R., Karathanasis, S. K., and Rekhter, M. D. (2004) Inhibition of sphingomyelin synthesis reduces atherogenesis in apolipoprotein E-knockout mice. Circulation, 110, 3465–3471.

    Article  PubMed  CAS  Google Scholar 

  • Perry, D. K. (2002) Serine palmitoyltransferase: role in apoptotic de novo ceramide synthesis and other stress responses. Biochim Biophys Acta, 1585, 146–152.

    PubMed  CAS  Google Scholar 

  • Petrache, I., Natarajan, V., Zhen, L., Medler, T. R., Richter, A. T., Cho, C., Hubbard, W. C., Berdyshev, E. V., and Tuder, R. M. (2005) Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice. Nat Med, 11, 491–498.

    Article  PubMed  CAS  Google Scholar 

  • Pinto, W. J., Srinivasan, B., Shepherd, S., Schmidt, A., Dickson, R. C., and Lester, R. L. (1992) Sphingolipid long-chain-base auxotrophs of Saccharomyces cerevisiae: genetics, physiology, and a method for their selection. J Bacteriol, 174, 2565–2574.

    PubMed  CAS  Google Scholar 

  • Reynolds, C. P., Maurer, B. J., and Kolesnick, R. N. (2004) Ceramide synthesis and metabolism as a target for cancer therapy. Cancer Lett, 206, 169–180.

    Article  PubMed  CAS  Google Scholar 

  • Riebeling, C., Allegood, J. C., Wang, E., Merrill, A. H., Jr., and Futerman, A. H. (2003) Two mammalian longevity assurance gene (LAG1) family members, trh1 and trh4, regulate dihydroceramide synthesis using different fatty acyl-CoA donors. J Biol Chem, 278, 43452–43459.

    Article  PubMed  CAS  Google Scholar 

  • Riley, R. T., Wang, E., Schroeder, J. J., Smith, E. R., Plattner, R. D., Abbas, H., Yoo, H. S., and Merrill, A. H., Jr. (1996) Evidence for disruption of sphingolipid metabolism as a contributing factor in the toxicity and carcinogenicity of fumonisins. Nat Toxins, 4, 3–15.

    Article  PubMed  CAS  Google Scholar 

  • Ruvolo, P. P. (2003) Intracellular signal transduction pathways activated by ceramide and its metabolites. Pharmacol Res, 47, 383–392.

    Article  PubMed  CAS  Google Scholar 

  • Schmelz, E. M., Dombrink-Kurtzman, M. A., Roberts, P. C., Kozutsumi, Y., Kawasaki, T., and Merrill, A. H., Jr. (1998) Induction of apoptosis by fumonisin Bl in HT29 cells is mediated by the accumulation of endogenous free sphingoid bases. Toxicol Appl Pharmacol, 148, 252–260.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz-Peiffer, C. (2002) Protein kinase C and lipid-induced insulin resistance in skeletal muscle. Ann N Y Acad Sci, 967, 146–157.

    Article  PubMed  CAS  Google Scholar 

  • Schorling, S., Vallee, B., Barz, W. P., Riezman, H., and Oesterhelt, D. (2001) Lag1p and Lac1p are essential for the Acyl-CoA-dependent ceramide synthase reaction in Saccharomyces cerevisae. Mol Biol Cell, 12, 3417–3427.

    PubMed  CAS  Google Scholar 

  • Schulze, H., Michel, C., and van Echten-Deckert, G. (2000) Dihydroceramide desaturase. Methods Enzymol, 311, 22–30.

    Article  PubMed  CAS  Google Scholar 

  • Schutze, S., Machleidt, T., and Kronke, M. (1994) The role of diacylglycerol and ceramide in tumor necrosis factor and interleukin-1 signal transduction. J Leukoc Biol, 56, 533–541.

    PubMed  CAS  Google Scholar 

  • Shimabukuro, M., Zhou, Y. T., Levi, M., and Unger, R. H. (1998) Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes. Proc Natl Acad Sci U S A, 95, 2498–2502.

    Article  PubMed  CAS  Google Scholar 

  • Shiratori, Y., Okwu, A. K., and Tabas, I. (1994) Free cholesterol loading of macrophages stimulates phosphatidylcholine biosynthesis and up-regulation of CTP: phosphocholine cytidylyltransferase. J Biol Chem, 269, 11337–11348.

    PubMed  CAS  Google Scholar 

  • Slife, C. W., Wang, E., Hunter, R., Wang, S., Burgess, C., Liotta, D. C., and Merrill, A. H., Jr. (1989) Free sphingosine formation from endogenous substrates by a liver plasma membrane system with a divalent cation dependence and a neutral pH optimum. J Biol Chem, 264, 10371–10377.

    PubMed  CAS  Google Scholar 

  • Spiegel, S., and Merrill, A. H., Jr. (1996) Sphingolipid metabolism and cell growth regulation. Faseb J, 10, 1388–1397.

    PubMed  CAS  Google Scholar 

  • Spiegel, S., and Milstien, S. (1995) Sphingolipid metabolites: members of a new class of lipid second messengers. J Membr Biol, 146, 225–237.

    PubMed  CAS  Google Scholar 

  • Spiegel, S., and Milstien, S. (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol, 4, 397–407.

    Article  PubMed  CAS  Google Scholar 

  • Summers, S. A., and Nelson, D. H. (2005) A role for sphingolipids in producing the common features of type 2 diabetes, metabolic syndrome X, and Cushing’s syndrome. Diabetes, 54, 591–602.

    Article  PubMed  CAS  Google Scholar 

  • Uehara, K., Miura, S., Takeuchi, T., Taki, T., Nakashita, M., Adachi, M., Inamura, T., Ogawa, T., Akiba, Y., Suzuki, H., Nagata, H., and Ishii, H. (2003) Significant role of ceramide pathway in experimental gastric ulcer formation in rats. J Pharmacol Exp Ther, 305, 232–239.

    Article  PubMed  CAS  Google Scholar 

  • Uhlinger, D. J., Carton, J. M., Argentieri, D. C., Damiano, B. P., and D’Andrea, M. R. (2001) Increased expression of serine palmitoyltransferase (SPT) in balloon-injured rat carotid artery. Thromb Haemost, 86, 1320–1326.

    PubMed  CAS  Google Scholar 

  • Unger, R. H., and Orci, L. (2002) Lipoapoptosis: its mechanism and its diseases. Biochim Biophys Acta, 1585, 202–212.

    PubMed  CAS  Google Scholar 

  • Venkataraman, K., Riebeling, C., Bodennec, J., Riezman, H., Allegood, J. C., Sullards, M. C., Merrill, A. H., Jr., and Futerman, A. H. (2002) Upstream of growth and differentiation factor 1 (uogl), a mammalian homolog of the yeast longevity assurance gene 1 (LAG1), regulates N-stearoyl-sphinganine (C18-(dihydro)ceramide) synthesis in a fumonisin B1-independent manner in mammalian cells. J Biol Chem, 277, 35642–35649.

    Article  PubMed  CAS  Google Scholar 

  • Wang, E., Norred, W. P., Bacon, C. W., Riley, R. T., and Merrill, A. H., Jr. (1991) Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme. J Biol Chem, 266, 14486–14490.

    PubMed  CAS  Google Scholar 

  • Worgall, T. S., Juliano, R. A., Seo, T., and Deckelbaum, R. J. (2004) Ceramide synthesis correlates with the posttranscriptional regulation of the sterol-regulatory element-binding protein. Arterioscler Thromb Vasc Biol, 24, 943–948.

    Article  PubMed  CAS  Google Scholar 

  • Zanolari, B., Friant, S., Funato, K., Sutterlin, C., Stevenson, B. J., and Riezman, H. (2000) Sphingoid base synthesis requirement for endocytosis in Saccharomyces cerevisiae. Embo J, 19, 2824–2833.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, D. X., Fryer, R. M., Hsu, A. K., Zou, A. P., Gross, G. J., Campbell, W. B., and Li, P. L. (2001) Production and metabolism of ceramide in normal and ischemic-reperfused myocardium of rats. Basic Res Cardiol, 96, 267–274.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Kitatani, K., Cowart, L.A., Hannun, Y.A. (2006). Generation of Signaling Molecules by De Novo Sphingolipid Synthesis. In: Hirabayashi, Y., Igarashi, Y., Merrill, A.H. (eds) Sphingolipid Biology. Springer, Tokyo. https://doi.org/10.1007/4-431-34200-1_11

Download citation

Publish with us

Policies and ethics