Skip to main content

Physiology of the Spinal Cord

  • Chapter
Book cover Evoked Spinal Cord Potentials

Abstract

Using a microelectrode, it is a straightforward procedure to record the responses of single neurons within the spinal cord gray matter to stimulation of primary afferents (Willis and Coggeshall, 2004). Interneurons in the dorsal horn can be distinguished from afferent axons by their response properties and by the configuration of their action potentials. For example, interneurons can generally be activated by a number of different types of sensory receptors, whereas a primary afferent fiber would belong to just a single kind of sense organ. The extracellular action potentials of interneurons are predominantly negative (Fig. 2.1A), whereas those of afferent axons are chiefly positive in sign (because they are usually recorded just outside an internode and only rarely outside a node of Ranvier). Intracellular recordings from dorsal horn interneurons reveal postsynaptic potentials in response to stimulation of primary afferent fibers (Fig. 2.1B, upper trace). In the ventral horn, a motor neuron can be identified by antidromic activation following stimulation of its motor axon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Section A: Chapter 2

  • Alvarez-Leefmans FJ, Leon-Olea M, Mendoza-Sotelo J, Alvarez FJ, Anton B, Garduno R. Immunolocalization of the Na(+)-K(+)-2Cl(−) cotransporter in peripheral nervous tissue of vertebrates. Neuroscience 2001;104(2):569–82.

    Article  PubMed  CAS  Google Scholar 

  • Andrew D, Craig AD. Spinothalamic lamina I neurones selectively responsive to cutaneous warming in cats. J Physiol 2001;537:489–95.

    Article  PubMed  CAS  Google Scholar 

  • Apkarian AV, Hodge CJ. Primate spinothalamic pathways. I. A quantitative study of the cells of origin of the spinothalamic pathway. J Comp Neurol 1989;288:447–73.

    Article  PubMed  CAS  Google Scholar 

  • Beall JE, Applebaum AE, Foreman RD, Willis WD. Spinal cord potentials evoked by cutaneous afferents in the monkey. J Neurophysiol 1977;40:199–211.

    PubMed  CAS  Google Scholar 

  • Chung JM, Kenshalo DR, Gerhart KD, Willis WD. Excitation of primate spinothalamic neurons by cutaneous C-fiber volleys. J Neurophysiol 1979;42:1354–69.

    PubMed  CAS  Google Scholar 

  • Craig AD, Krout K, Andrew D. Quantitative response characteristics of thermoreceptive and nociceptive lamina I spinothalamic neurons in the cat. J Neurophysiol 2001;86:1459–80.

    PubMed  CAS  Google Scholar 

  • Dostrovsky JO, Craig AD. Cooling specific spinothalamic neurons in the monkey. J Neurophysiol 1996;76:3656–65.

    PubMed  CAS  Google Scholar 

  • Dougherty PM, Sluka KA, Sorkin LS, Westlund KN, Willis WD. Neural changes in acute arthritis in monkeys: I. Parallel enhancement of responses of spinothalamic tract neurons to mechanical stimulation and excitatory amino acids. Brain Res Rev 1992;17:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Eccles JC. The physiology of synapses. New York: Springer; 1964.

    Google Scholar 

  • Eccles JC, Kostyuk PG, Schmidt RF. Central pathways responsible for depolarization of primary afferent fibres. J Physiol 1962;161:237–57.

    PubMed  CAS  Google Scholar 

  • Eccles JC, Schmidt RF, Willis WD. Pharmacological studies on presynaptic inhibition. J Physiol 1963a;168:500–30.

    PubMed  CAS  Google Scholar 

  • Eccles JC, Schmidt RF, Willis WD. The location and the mode of action of the presynaptic inhibitory pathways on to group Ia afferent fibers from muscle. J Neurophysiol 1963b;26:506–22.

    Google Scholar 

  • Ferrington DG, Sorkin LS, Willis WD. Responses of spinothalamic tract cells in the superficial dorsal horn of the primate lumbar spinal cord. J Physiol 1987;388:681–703.

    PubMed  CAS  Google Scholar 

  • Foreman RD, Schmidt RF, Willis WD. Effects of mechanical and chemical stimulation of fine muscle afferents upon primate spinothalamic tract cells. J Physiol 1979;286:215–31.

    PubMed  CAS  Google Scholar 

  • Foreman RD, Blair RW, Weber RN. Viscerosomatic convergence onto T2–T4 spinoreticular, spinoreticular-spinothalamic, and spinothalamic tract neurons in the cat. Exp Neurol 1984;85:597–619.

    Article  PubMed  CAS  Google Scholar 

  • Giesler GJ, Yezierski RP, Gerhart KD, Willis WD. Spinothalamic tract neurons that project to medial and/or lateral thalamic nuclei: Evidence for a physiological novel population of spinal cord neurons. J Neurophysiol 1981;46:1285–308.

    PubMed  Google Scholar 

  • Maixner W, Dubner R, Bushnell MC, Kenshalo DR, Oliveras JL. Wide-dynamic-range dorsal horn neurons participate in the encoding process by which monkeys perceive the intensity of noxious heat stimuli. Brain Res 1986;374:385–8.

    Article  PubMed  CAS  Google Scholar 

  • Mendell LM. Physiological properties of unmyelinated fiber projections to the spinal cord. Exp Neurol 1966;16:316–32.

    Article  PubMed  CAS  Google Scholar 

  • Milne RJ, Foreman RD, Giesler GJ, Willis WD. Convergence of cutaneous and pelvic visceral nociceptive input onto primate spinothalamic neurons. Pain 1981;11:163–83.

    Article  PubMed  CAS  Google Scholar 

  • Owens CM, Zhang D, Willis WD. Changes in the response states of primate spinothalamic tract cells caused by mechanical damage of the skin or activation of descending controls. J Neurophysiol 1992;67:1509–27.

    PubMed  CAS  Google Scholar 

  • Surmeier DJ, Honda CN, Willis WD. Responses of primate spinothalamic neurons to noxious thermal stimulation of glabrous and hairy skin. J Neurophysiol 1986;56:328–50.

    PubMed  CAS  Google Scholar 

  • Willis WD. Evoked spinal cord potentials in the cat and monkey: use in the analysis of spinal cord function. In: Homma S, Tamaki T, editors; Shimoji K, Kurokawa T, co-editors. Fundamentals and clinical application of spinal cord monitoring. Tokyo: Saikon; 1984. p. 3–19.

    Google Scholar 

  • Willis WD. Neural mechanisms of pain discrimination. In: Lund JS, editor. Sensory processing in the mammalian brain. Oxford: Oxford University Press; 1989. p. 130–43.

    Google Scholar 

  • Willis WD. Dorsal root potentials and dorsal root reflexes: a double-edged sword. Exp Brain Res 1999;124:395–421.

    Article  PubMed  CAS  Google Scholar 

  • Willis WD, Coggeshall RE. Sensory mechanisms of the spinal cord. 3rd ed. New York: Kluwer Academic/Plenum; 2004.

    Google Scholar 

  • Willis WD, Trevino DL, Coulter JD, Maunz RA. Responses of primate spinothalamic tract neurons to natural stimulation of hindlimb. J Neurophysiol 1974;37:358–72.

    PubMed  CAS  Google Scholar 

  • Willis WD, Kenshalo DR, Leonard RB. The cells of origin of the primate spinothalamic tract. J Comp Neurol 1979;188:543–74.

    Article  PubMed  CAS  Google Scholar 

  • Willis WD, Zhang X, Honda CN, Giesler GJ. Projections from the marginal zone and deep dorsal horn to the ventrobasal nuclei of the primate thalamus. Pain 2001;92:267–76.

    Article  PubMed  Google Scholar 

  • Zhang D, Owens CM, Willis WD. Short-latency excitatory postsynaptic potentials are evoked in primate spinothalamic tract neurons by corticospinal tract volleys. Pain 1991;45:197–201.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Willis, W.D. (2006). Physiology of the Spinal Cord. In: Shimoji, K., Willis, W.D. (eds) Evoked Spinal Cord Potentials. Springer, Tokyo. https://doi.org/10.1007/4-431-30901-2_2

Download citation

  • DOI: https://doi.org/10.1007/4-431-30901-2_2

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-24026-6

  • Online ISBN: 978-4-431-30901-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics