Some variational convergence results with applications to evolution inclusions

Part of the Advances in Mathematical Economics book series (MATHECON, volume 8)


We study variational convergence for integral functionals defined on L H ([0, 1];dt) × y([0,1]; \( \mathbb{Y} \) ) where ℍ is a separable Hilbert space, \( \mathbb{D} \) is a Polish space and y[0,1]; \( \mathbb{D} \) ) is the space of Young measures on [0,1] × \( \mathbb{D} \) , and we investigate its applications to evolution inclusions. We prove the dependence of solutions with respect to the control Young measures and apply it to the study of the value function associated with these control problems. In this framework we then prove that the value function is a viscosity subsolution of the associated HJB equation. Some limiting properties for nonconvex integral functionals in proximal analysis are also investigated.

Key words

Young measure relaxed control semicontinuity integral functional subdifferential proximal analysis viscosity subsolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Attouch, H., Cabot, A., Redont, P.: The dynamics of elastic shocks via epigraphical regularizations of a differential inclusion. Barrier and penalty approximations. Advances in Mathematical Sciences and Applications 12, no.1, 273–306 (2002)zbMATHMathSciNetGoogle Scholar
  2. [2]
    Balder, E.J.: New fundamentals of Young measure convergence. In: Calculus of Variations and Optimal Control (Haifa 1998). pp.24–48 Chapman & Hall, Boca Raton, FL 2000Google Scholar
  3. [3]
    Balder, E.J.: A general approach to lower semicontinuity result and lower closure in optimal control theory. SIAM J. Control and Optimization 22, 570–598 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Berliocchi, H., Lasry, J.M.: Intégrandes normales et mesures paramétrées en calcul des variations. Bull. Soc. Math. France 101, 129–184 (1973)zbMATHMathSciNetGoogle Scholar
  5. [5]
    Brezis, H.: Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans un Espace de Hilbert. North Holland 1979Google Scholar
  6. [6]
    Castaing, C., Ibrahim, M.G.: Functional evolution governed by m-accretive operators. Adv. Math. Econ. 5, 23–54 (2003)MathSciNetGoogle Scholar
  7. [7]
    Castaing, C., Jalby, V.: Epi-convergence of integral functionals defined on the space of measures. Appplications to the sweeping process. Atti Sem. Mat Fis. Modena 43,113–157(1995)zbMATHMathSciNetGoogle Scholar
  8. [8]
    Castaing, C., Jofre, A.: Optimal control problems and variational problems. Tech. rep., Université de Montpellier II, Preprint 03/03 (2003)Google Scholar
  9. [9]
    Castaing, C., Jofre, A., Salvadori, A.: Control problems governed by functional evolution inclusions with Young measures. J. Nonlinear Convex Anal. 5, 131–152(2004)zbMATHMathSciNetGoogle Scholar
  10. [10]
    Castaing, C., Salvadori, A., Thibault, L.: Functional evolution equations governed by nonconvex sweeping process. Journal of Nonlinear and Convex Anal. 2, No.2, 217–241 (2001)zbMATHMathSciNetGoogle Scholar
  11. [11]
    Castaing, C., Jofre, A., Syam, A.: Some limit results for integrands and Hamiltonians with application to viscosity. Preprint, Université Montpellier II (2005)Google Scholar
  12. [12]
    Castaing, C., Raynaud de Fitte, P.: On the fiber product of Young measures with application to a control problem with measures. Adv. Math. Econ. 6, 1–38 (2004)MathSciNetGoogle Scholar
  13. [13]
    Castaing, C., Raynaud de Fitte, P., Salvadori, A.: Some variational convergence results for a class of evolution inclusions of second order using Young measures. Adv. Math. Econ. 7, 1–32 (2005)CrossRefGoogle Scholar
  14. [14]
    Castaing, C., Raynaud de Fitte, P., Valadier, M.: Young Measures on Topological Spaces. With Applications in Control Theory and Probability Theory. Kluwer Academic Publishers, Dordrecht 2004Google Scholar
  15. [15]
    Dudley, R.: Convergence of Baire measures. Studia Math. 27, 7–17 (1966)MathSciNetGoogle Scholar
  16. [16]
    Engelking, R.: General Topology. Heldermann Verlag, Berlin 1989zbMATHGoogle Scholar
  17. [17]
    Edmond, J.F, Thibault, L.: Sweeping process of Lipschitz perturbations and relaxation. preprint, Université Montpellier II (2004)Google Scholar
  18. [18]
    Gaidukevich, O.Ī., Maslyuchenko, V.K., Mikhailyuk, V.V.: Direct limits and the Scorza-Dragoni property. (Ukrainian. English summary) Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki no.5, 10–13 (2001)MathSciNetGoogle Scholar
  19. [19]
    Gīhman, I.Ī., Skorohod, A.V.: Controlled Stochastic Processes. Springer-Verlag, New York 1979Google Scholar
  20. [20]
    Guessous, M.: An elementary proof of Komlós-Revész theorem in Hilbert spaces. J. Convex Anal. 4, 321–332 (1997)zbMATHMathSciNetGoogle Scholar
  21. [21]
    Hoffmann-Jørgensen, J.: Weak compactness and tightness of subsets of M(X). Math. Scand. 31, 127–150 (1972)zbMATHMathSciNetGoogle Scholar
  22. [22]
    Johnson, G.W.: The dual of C(S, F). Math. Ann. 187, 1–8 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    Kucia, A.: Scorza Dragoni type theorems. Fund. Math. 138, no.3, 197–203 (1991)zbMATHMathSciNetGoogle Scholar
  24. [24]
    Ozaki, H.: Dynamic programming with upper semi-continuous stochastic aggregator. Adv. Math. Econ. 4,25–39 (2002)MathSciNetGoogle Scholar
  25. [25]
    Valadier, M.: Convex integrands on Souslin locally convex spaces. Pacific J. Math. 59, 267–276 (1975)zbMATHMathSciNetGoogle Scholar
  26. [26]
    Valadier, M.: Young measures. In: Methods of Nonconvex Analysis (A. Cellina ed.). Lecture Notes in Math. 1446, pp.152–158 Springer, Berlin 1990CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Département de MathématiquesUniversité Montpellier IIMontpellier Cedex 5France
  2. 2.Laboratoire Raphaël Salem, UMR CNRS 6085, UFR SciencesUniversité de RouenSaint Etienne du RouvrayFrance
  3. 3.Dipartimento di MatematicaUniversità di PerugiaPerugiaItaly

Personalised recommendations