Skip to main content

Identification of Molecular Systems Responsible for the Therapeutic Effect of Antidepressant

  • Conference paper
Breathing, Feeding, and Neuroprotection
  • 234 Accesses

Summary

Although blockade by antidepressants of monoamine uptake into nerve endings is one of the cornerstones of the monoamine hypothesis of depression, there is a clear discrepancy between the rapid effects of antidepressants in increasing synaptic concentrations of monoamine and the lack of immediate clinical efficiency of antidepressant treatment. Pharmacogenomics, functional genomics and proteomics are powerful tools that can be used to identify genes/ESTs or molecular systems affected by antidepressants. Using a differential cloning strategy, we and other groups have isolated genes that are differentially expressed in the brain after chronic antidepressant treatment. Some of these candidate genes may encode functional molecular systems or pathways induced by chronic antidepressant treatment. Defining the roles of these molecular systems in drug-induced neural plasticity is likely to transform the course of research on the biological basis of depression. Such detailed knowledge will have profound effects on the diagnosis, prevention, and treatment of depression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andriamampandry C, Muller C, Schmidt-Mutter C, Gobaille S, Spedding M, Aunis D, Maitre M (2002) Mss4 gene is up-regulated in rat brain after chronic treatment with antidepressant and down-regulated when rats are anhedonic. Mol Pharmacol 62: 1332–1338

    Article  PubMed  CAS  Google Scholar 

  • Celano E, Tiraboschi E, Consogno E, D’Urso G, Mbakop MP, Gennarelli M, de Bartolomeis A, Racagni G, Popoli M. (2003) Selective regulation of presynaptic calcium/calmodulin-dependent kinase II by psychotropic drugs. Biol Psychiatry 53: 442–449

    Article  PubMed  CAS  Google Scholar 

  • Chen B, Wang JF, Sun X, Young LT (2003) Regulation of GAP-43 expression by chronic desipramine treatment in rat cultured hippocampal cells, Biol Psychiatry 53: 530–537

    Article  PubMed  CAS  Google Scholar 

  • D’Sa C, Duman RS (2002) Antidepressants and neuroplasticity. Bipolar Disord 4: 183–194

    Article  PubMed  CAS  Google Scholar 

  • Duman RS (1998) Novel therapeutic approaches beyond the serotonin receptor. Biol Psychiatry 44: 324–335

    Article  PubMed  CAS  Google Scholar 

  • Duman RS, Heninger GR, Nestler EJ (1997) A molecular and cellular theory of depression. Arch Gen Psychiatry 54: 597–606

    PubMed  CAS  Google Scholar 

  • Duman RS, Malberg J, Thome J (1999) Neural plasticity to stress and antidepres-sant treatment. Biol Psychiatry 46: 1181–1191

    Article  PubMed  CAS  Google Scholar 

  • Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH, Duman RS, Heninger GR, Nestler EJ (1998) Neurogenesis in the adult human hippocampus. Nat Med 4: 1313–1317

    Article  PubMed  CAS  Google Scholar 

  • Golembiowska K, Dziubina A (2000) Effect of acute and chronic administration of citalopram on glutamate and aspartate release in the rat prefrontal cortex. Pol J Pharmacol 52: 441–448

    PubMed  CAS  Google Scholar 

  • Gould E, Tanapat P (1999) Stress and hippocampal neurogenesis. Biol Psychiatry 46: 1472–1479

    Article  PubMed  CAS  Google Scholar 

  • Hellsten J, Wennstrom M, Mohapel P, Ekdahl CT, Bengzon J, Tingstrom A (2002) Electroconvulsive seizures increase hippocampal neurogenesis after chronic corticosterone treatment. Eur J Neurosci 16: 283–290

    Article  PubMed  Google Scholar 

  • Honer WG, Falkai P, Bayer TA, Xie J, Hu L, Li HY, Arango V, Mann JJ, Dwork AJ, Trimble WS. (2002) Abnormalities of SNARE mechanism proteins in anterior frontal cortex in severe mental illness. Cerebral Cortex 12: 349–356

    Article  PubMed  Google Scholar 

  • Malberg JE, Eisch AJ, Nestler EJ and Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20: 9104–9110

    PubMed  CAS  Google Scholar 

  • Nilsson M, Perfilieva E, Johansson U, Orwar O, Eriksson PS (1999) Enriched environment increases neurogenesis in the adult rat dentate gyrus and improves spatial memory. J Neurobiol 39: 569–578

    Article  PubMed  CAS  Google Scholar 

  • Stewart CA, Reid IC (2000) Repeated ECS and fluoxetine administration have equivalent effects on hippocampal synaptic plasticity. Psychopharmacol 148: 217–223

    Article  CAS  Google Scholar 

  • Vaidya VA, Siuciak JA, Du F, Duman RS (1999) Hippocampal mossy fiber sprouting induced by chronic electroconvulsive seizures. Neurosci 89: 157–166

    Article  CAS  Google Scholar 

  • van Praag H, Christie BR, Sejnowski TJ, Gage FH (1999) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci USA 96: 13427–13431

    Article  PubMed  Google Scholar 

  • Yamada M, Higuchi T (2002) Functional genomics and depression research. Eur Neuropsychopharmacol 12: 235–244

    Article  PubMed  Google Scholar 

  • Yamada M, Takahashi K, Tsunoda M, Nishioka G, Kudo K, Ohata H, Kamijima K, Higuchi T, Momose K, Yamada M (2002) Differential expression of VAMP2/synaptobrevin-2 after antidepressant and electroconvulsive treatment in rat frontal cortex. Pharmacogenomics J 2: 377–382

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Yamada M, Yamazaki S, Nara K, Kiuchi Y, Ozawa H, Yamada S, Oguchi K, Kamijima K, Higuchi T, Momose K (2001) Induction of cysteine string protein after chronic antidepressant treatment revealed by ADRG microarray. Neurosci Lett 301: 183–186

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Tokyo

About this paper

Cite this paper

Yamada, M., Yamada, M. (2006). Identification of Molecular Systems Responsible for the Therapeutic Effect of Antidepressant. In: Homma, I., Shioda, S. (eds) Breathing, Feeding, and Neuroprotection. Springer, Tokyo. https://doi.org/10.1007/4-431-28775-2_12

Download citation

Publish with us

Policies and ethics