Skip to main content

Abstract

Surgical resection of brain tumors involving the so-called eloquent areas remains challenging, and various adjunct strategies have been employed to improve patient outcomes, including awake surgery, intraoperative navigation systems, and intraoperative electrical and chronic intracranial electrical stimulation. It has been also suggested that preservation of cortical as well as subcortical function is critical for improved outcomes. With the advent of magnetic resonance (MR) imaging, it is now possible to visualize the white matter fibers of the brain with diffusion tensor images (DTI), a technique also known as fiber-tracking or tractography [15].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mori S, Crain BJ, Chacko VP, et al (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269

    Article  PubMed  CAS  Google Scholar 

  2. Conturo TE, Lori NF, Cull TS, et al (1999) Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U.S.A. 96:10422–10427

    Article  PubMed  CAS  Google Scholar 

  3. Gossl C, Fahrmeir L, Putz B, et al (2002) Fiber tracking from DTI using linear state space models: Detectability of the pyramidal tract. Neuroimage 16:378–388

    Article  PubMed  CAS  Google Scholar 

  4. Witwer BP, Moftakhar R, Hasan KM, et al (2002) Diffusion-tensor imaging of white matter tracts in patients with cerebral neoplasm. J Neurosurg 97:568–575

    PubMed  Google Scholar 

  5. Yamada K, Kizu O, Mori S, et al (2003) Clinically feasible diffusion-tensor imaging for fiber tracking. Radiology 227:295–301

    PubMed  Google Scholar 

  6. Wiegell MR, Larsson HB, Wedeen VJ (2000) Fiber crossing in human brain depicted with diffusion tensor MR imaging. Radiology 217:897–903

    PubMed  CAS  Google Scholar 

  7. van den Brink JS, Watanabe Y, Kuhl CK, et al (2003) Implications of SENSE MR in routine clinical practice. Eur J Radiol 46:3–27

    Article  PubMed  Google Scholar 

  8. Golay X, Brown SJ, Itoh R, et al (2001) Time-resolved contrast-enhanced carotid MR angiography using sensitivity encoding (SENSE). AJNR Am J Neuroradiol 22:1615–1619

    PubMed  CAS  Google Scholar 

  9. Golay X, Pruessmann KP, Weiger M, et al (2000) Presto sense: An ultrafast whole-brain fMRI technique. Magn Reson Med 43:779–786

    Article  PubMed  CAS  Google Scholar 

  10. Kyriakos WE, Panych LP, Kacher DF, et al (2000) Sensitivity profiles from an array of coilsfor encoding and reconstruction in parallel (SPACE RIP). Magn Reson Med 44:301–308

    Article  PubMed  CAS  Google Scholar 

  11. Jones DK (2003) Proceedings of the 11th annual meeting of ISMRM. Toronto, Canada, p 72

    Google Scholar 

  12. Jones DK (2005) Contribution of cardiac pulsation to variability of tractography results, proceedings of the 13th annual meeting of ISMRM. Miami, FL, p 222

    Google Scholar 

  13. Chenevert TL, Brunberg JA, Pipe JG (1990) Anisotropic diffusion in human white matter: Demonstration with MR technique in vivo. Radiology 177:401–405

    PubMed  CAS  Google Scholar 

  14. Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66:259–267

    PubMed  CAS  Google Scholar 

  15. Basser PJ, Mattiello J, LeBihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103:247–254

    Article  PubMed  CAS  Google Scholar 

  16. Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36:893–906

    Article  PubMed  CAS  Google Scholar 

  17. Xue R, van Zijl PCM, Crain BJ, et al (1999) In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging. Magn Reson Med 42:1123–1127

    Article  PubMed  CAS  Google Scholar 

  18. Coenen VA, Krings T, Mayfrank L, et al (2001) Three-dimensional visualization of the pyramidal tract in a neuronavigation system during brain tumor surgery: First experiences and technical note. Neurosurgery 49:86–93

    Article  PubMed  CAS  Google Scholar 

  19. Hendler T, Pianka P, Sigal M, et al (2003) Delineating gray and white matter involvement in brain lesions: Three-dimensional alignment of functional magnetic resonance and diffusion-tensor imaging. J Neurosurg 99:1018–1027

    PubMed  Google Scholar 

  20. Holodny AI, Schwartz TH, Ollenschleger M, et al (2001) Tumor involvement of the corticospinal tract: Diffusion magnetic resonance tractography with intraoperative correlation. J Neurosurg 95:1082

    Article  PubMed  CAS  Google Scholar 

  21. Yamamoto T, Yamada K, Nishimura T, et al (2005) Tractography to depict three layers of visual field trajectories to the calcarine gyri. AJO (in press)

    Google Scholar 

  22. Kunimatsu A, Aoki S, Masutani Y, et al (2003) Three dimensional white matter tractography by diffusion tensor imaging in ischaemic stroke involving the corticospinal tract. Neuroradiology 45:532–535

    Article  PubMed  CAS  Google Scholar 

  23. Yamada K, Mori S, Nakamura H, et al (2003) Fiber-tracking method reveals sensorimotor pathway involvement in stroke patients. Stroke 34:E159–162

    Article  PubMed  Google Scholar 

  24. Konishi J, Yamada K, Kizu O, et al (2005) MR tractography for the evaluation of the functional recovery from lenticulostriate infarct. Neurology 64:108–113

    PubMed  CAS  Google Scholar 

  25. Yamada K, Kizu O, Ito H, et al (2004) Tractography for an arteriovenous malformation. Neurology 62:669

    PubMed  Google Scholar 

  26. Yamada K, Kizu O, Ito H, et al (2005) Tractography for arteriovenous malformations near the sensorimotor cortices. AJNR Am J Neuroradiol 26:598–602

    PubMed  Google Scholar 

  27. Aoki S, Iwata NK, Masutani Y, et al (2005) Quantitative evaluation of the pyramidal tract segmented by diffusion tensor tractography: Feasibility study in patients with amyotrophic lateral sclerosis. Radiat Med 23:195–199

    PubMed  Google Scholar 

  28. Abe O, Yamada H, Masutani Y, et al (2004) Amyotrophic lateral sclerosis: Diffusion tensor tractography and voxel-based analysis. NMR Biomed 17:411–416

    Article  PubMed  Google Scholar 

  29. Yoo SS, Park HJ, Soul JS, et al (2005) In vivo visualization of white matter fiber tracts of preterm-and term-infant brains with diffusion tensor magnetic resonance imaging. Invest Radiol 40:110–115

    Article  PubMed  Google Scholar 

  30. Hoon AH Jr, Lawrie WT Jr, Melhem ER, et al (2002) Diffusion tensor imaging of periventricular leukomalacia shows affected sensory cortex white matter pathways. Neurology 59:752–756

    PubMed  Google Scholar 

  31. Lee SK, Kim DI, Kim J, et al (2005) Diffusion-tensor MR imaging and fiber tractography: A new method of describing aberrant fiber connections in developmental CNS anomalies. Radiographics 25:53–68

    Article  PubMed  Google Scholar 

  32. Pagani E, Filippi M, Rocca MA, et al (2005) A method for obtaining tract-specific diffusion tensor MRI measurements in the presence of disease: Application to patients with clinically isolated syndromes suggestive of multiple sclerosis. Neuroimage 26:258–265

    Article  PubMed  CAS  Google Scholar 

  33. Le TH, Mukherjee P, Henry RG, et al (2005) Diffusion tensor imaging with three-dimensional fiber tractography of traumatic axonal shearing injury: An imaging correlate for the posterior callosal “disconnection” syndrome: Case report. Neurosurgery 56:189

    PubMed  Google Scholar 

  34. Tsuchiya K, Fujikawa A, Suzuki Y (2005) Diffusion tractography of the cervical spinal cord by using parallel imaging. AJNR Am J Neuroradiol 26:398–400

    PubMed  Google Scholar 

  35. Lin CP, Tseng WY, Cheng HC, et al (2001) Validation of diffusion tensor magnetic resonance axonal fiber imaging with registered manganese-enhanced optic tracts. Neuroimage 14:1035–1047

    Article  PubMed  CAS  Google Scholar 

  36. Okada T, Miki Y, Yamamoto K, et al (2005) Integration of diffusion tensor tractography of the corticospinal tract using 3 T with intraoperative white matter stimulation mapping: A preliminary result to validate the corticospinal tract localization. Radiology (in press)

    Google Scholar 

  37. Clark CA, Barrick TR, Murphy MM, et al (2003) White matter fiber tracking in patients with space-occupying lesions of the brain: A new technique for neurosurgical planning? Neuroimage 20:1601–1608

    Article  PubMed  Google Scholar 

  38. Tuch DS, Reese TG, Wiegell MR, et al (2002) High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med 48:577–582

    Article  PubMed  Google Scholar 

  39. Frank LR (2002) Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med 47:1083–1099

    Article  PubMed  Google Scholar 

  40. Ciccarelli O, Toosy AT, Parker GJ, et al (2003) Diffusion tractography based group mapping of major white-matter pathways in the human brain. Neuroimage 19:1545–1555

    Article  PubMed  CAS  Google Scholar 

  41. Parker GJ, Stephan KE, Barker GJ, et al (2002) Initial demonstration of in vivo tracing of axonal projections in the macaque brain and comparison with the human brain using diffusion tensor imaging and fast marching tractography. Neuroimage 15:797–809

    Article  PubMed  Google Scholar 

  42. Kinoshita M, Yamada K, Hashimoto N, et al (2005) Fiber-tracking does not accurately estimate size of fiber bundle in pathological condition: Initial neurosurgical experience using neuronavigation and subcortical white matter stimulation. Neuroimage 25:424–429

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Tokyo

About this paper

Cite this paper

Yamada, K., Kizu, O., Nishimura, T. (2006). MR Tractography for Minimally Invasive Neurosurgery. In: Kanno, T., Kato, Y. (eds) Minimally Invasive Neurosurgery and Multidisciplinary Neurotraumatology. Springer, Tokyo. https://doi.org/10.1007/4-431-28576-8_9

Download citation

  • DOI: https://doi.org/10.1007/4-431-28576-8_9

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-28551-9

  • Online ISBN: 978-4-431-28576-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics