Skip to main content

Combined Analysis of Metabolome and Transcriptome: Catabolism in Bacillus subtilis

  • Chapter
Metabolomics

5. Conclusions

The metabolite profiles of the B. subtilis cells are similarly independent on the carbon sources regardless of whether they suppress others or are suppressed by others. All the similar profiles were measured at the maximum growth rate, suggesting that B. subtilis has a predetermined metabolite profile optimized for the maximum growth rate. Differences in carbon sources induced local perturbations in the predetermined profile. One of such perturbations was the accumulation of the starting metabolites in the suppressed carbon sources. Combined analysis of the metabolite profile and DNA microarrays revealed that the first reaction in the catabolism was rate-limiting when B. subtilis was grown on suppressed carbon sources, although the enzyme genes of the reactions were upregulated. The present analysis suggests that the decrease or increase in the gene expression of an enzyme does not always result in the accumulation or decrease in its substrates or products, because of the multiplicity of metabolic pathway networks. Metabolome and transcriptome data that supplement each other provide much informatiion to study the global regulation of metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yoshida K, Kobayashi K, Miwa Y, Kang CM, Matsunaga M, Yamaguchi H, Tojo S, Yamamoto M, Nishi R, Ogasawara N, Nakayama, T, Fujita Y (2001) Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. Nucleic Acids Res 29:683–692

    Article  PubMed  CAS  Google Scholar 

  2. Zheng D, Constantinidou C, Hobman JL, Minchin SD (2004) Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nucleic Acids Res 32:5874–5893

    Article  PubMed  CAS  Google Scholar 

  3. Kolb A, Busby S, Buc H, Garges, S, Adhya S (1993) Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem 62:749–795

    Article  PubMed  CAS  Google Scholar 

  4. Saier M, Ramseier, T, Reizer J (1996) Regulation of carbon utilization. In: Neidhardt F, Curtiss R, Ingraham J, et al (eds) Escherichia coli and Salmonella: cellular and molecular biology, vol. 1. ASM Press, Washington, DC, pp 1325–1343

    Google Scholar 

  5. Fujita Y, Miwa Y, Galinier, A, Deutscher J (1995) Specific recognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr. Mol Microbiol 17:953–960

    Article  PubMed  CAS  Google Scholar 

  6. Soga T, Ueno Y, Naraoka H, Matsuda K, Tomita, M, Nishioka T (2002) Pressure-assisted capillary electrophoresis electrospray ionization mass spectrometry for analysis of multivalent anions. Anal Chem 74:6224–6229

    Article  PubMed  CAS  Google Scholar 

  7. Soga T, Ueno Y, Naraoka H, Ohashi Y, Tomita, M, Nishioka T (2002b) Smultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem 74:2233–2239.

    Article  PubMed  CAS  Google Scholar 

  8. Fujita, Y, Freese E (1979) Purification and properties of fructose-1,6-bisphosphatase of Bacillus subtilis. J Biol Chem 254:5340–5349

    PubMed  CAS  Google Scholar 

  9. Arita M (2003) In silico atomic tracing by substrate-product relationships in Escherichia coli intermediary metabolism. Genome Res 13:2455–2466.

    Article  PubMed  CAS  Google Scholar 

  10. Arita M (2004) The metabolic world of Escherichia coli is not small. Proc Natl Acad Sci USA 101:1543–1547

    Article  PubMed  CAS  Google Scholar 

  11. Deutscher J, Galinier, A, Martin-Verstraete I (2002) Carbohydrate uptake and metabolism. In: Sonenshein A, Hoch J, Losick R (eds) Bacillus subtilis and its closest relatives from genes to cells. ASM Press, Washington DC, pp 129–162

    Google Scholar 

  12. Doan T, Servant P, Tojo S, Yamaguchi H, Lerondel G, Yoshida K-I, Fujita, Y, Aymerich S (2003) The Bacillus subtilis ywkA gene encodes a malic enzyme and its transcription is activated by the YufL/YufM two-component system in response to malate. Microbiology 149:2331–2343

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Nishioka, T., Matsuda, K., Fujita, Y. (2005). Combined Analysis of Metabolome and Transcriptome: Catabolism in Bacillus subtilis. In: Tomita, M., Nishioka, T. (eds) Metabolomics. Springer, Tokyo. https://doi.org/10.1007/4-431-28055-3_9

Download citation

Publish with us

Policies and ethics