Top-Down and Bottom-Up Processes in the Perception of Reversible Figures: Toward a Hybrid Model

  • Thomas C. Toppino
  • Gerald M. Long


Reversible figures such as the Necker cube are ambiguous visual patterns that support at least two markedly different perceptual organizations. During a period of continuous viewing, observers’ conscious experience fluctuates, alternating between the possible interpretations. Attempts to explain this multistable perceptual character of reversible figures traditionally have attributed reversals to either bottom-up (stimulus driven) or top-down (conceptually-driven) processes. In the former case, perceptual fluctuations are attributed to the alternating fatigue and recovery of competing cortical organizations. In the latter case, perception is thought to be analogous to a hypothesis-testing or problem-solving process that successively considers alternative “solutions” to the perceptual puzzle represented by a reversible figure. We argue for a hybrid theoretical framework in which both types of processes contribute to figure reversals. By explicitly recognizing the contributions of both lower-level sensory processes and higher-level cognitive processes, the hybrid approach can resolve apparent conflicts in the reversible figure literature by calling attention to the fact that different viewing conditions can differentially engage top-down and bottom-up processes. The approach also provides a framework for future research, encouraging work that addresses how bottom-up and top-down processes are coordinated and how their effects are integrated in determining conscious perceptual experience.

Key words

Perceptual organization reversible figures ambiguous figures multistable perception top down processes bottom up processes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ammons, R. B., Ulrich, P., & Ammons, C. H. (1959). Voluntary control of perception of depth in a two-dimensional drawing. Proceedings of the Montana Academy of Sciences, 19, 160–168.Google Scholar
  2. Andrews, T. J., Schluppeck, D., Homfray, D., Matthews, P., & Blakemore, C. (2002). Activity in the fusiform gyrus predicts conscious perception of Rubin’s Vase-Face illusion. NeuroImage, 17, 890–901.PubMedCrossRefGoogle Scholar
  3. Attneave, F. (1971). Multistability in perception. Scientific American, 225, 62–71.CrossRefGoogle Scholar
  4. Babich, S., & Standing, L. (1981). Satiation effects with reversible figures. Perceptual and Motor Skills, 52, 203–210.PubMedGoogle Scholar
  5. Boring, E. G. (1930). A new ambiguous figure. American Journal of Psychology, 42, 444–445.CrossRefGoogle Scholar
  6. Boring, E. G. (1942). Sensation and perception in the history of experimental psychology. New York: Appleton Century.Google Scholar
  7. Bruner, J. S., & Minturn, A. L. (1955). Perceptual identification and perceptual organization. Journal of General Psychology, 53, 21–28.CrossRefGoogle Scholar
  8. DiLollo, V., Enns, J. T., & Rensink, R. A. (2000). Competition for consciousness among visual events: The psychophysics of reentrant visual processes. Journal of Experimental Psychology: General, 129, 481–507.CrossRefGoogle Scholar
  9. Dornic, S. (1967). Measurement of satiation in reversible figures. Studia Psychologica, 9, 18–24.Google Scholar
  10. Gale, A. G., & Findlay, J. M. (1983). Eye movement patterns in viewing ambiguous figures. In R. Groner, C. Menz, D. F. Fisher, & R. A. Monty (Eds.), Eye movements and psychological functions: International views (pp. 145–168). Hillsdale, NJ: Erlbaum.Google Scholar
  11. Garcia-Perez, M. A. (1989). Visual inhomogeneity and eye movements in multistable perception. Perception & Psychophysics, 46, 397–400.Google Scholar
  12. Gregory, R. L. (1974). Choosing a paradigm for perception. In E. C. Carterette & M. P. Friedman (Eds.), Handbook of perception. Volume 1: Historical and philosophical roots of perception (pp. 225–283). New York: Academic Press.Google Scholar
  13. Harris, J. P. (1980). How does adaptation to disparity affect the perception of reversible figures? American Journal of Psychology, 93, 445–457.PubMedCrossRefGoogle Scholar
  14. Helmholtz, H. von (1962). Handbuch der Physiologischen Optik Vol. III. (Third ed.). (J. P. C. Southall, Trans.). New York: Dover. (Original work published 1910).Google Scholar
  15. Kawabata, N. (1986). Attention and depth perception. Perception, 15, 563–572.PubMedGoogle Scholar
  16. Kawabata, N., & Mori, T. (1992). Disambiguating ambiguous figures by a model of selective attention. Biological Cybernetics, 67, 417–425.PubMedCrossRefGoogle Scholar
  17. Kohler, W. (1940). Dynamics in psychology. New York: Liveright.Google Scholar
  18. Kornmeier, J., & Bach, M. (2004). Early neural activity in Necker-cube reversal: Evidence for low-level processing of a gestalt phenomenon. Psychophysiology, 41, 1–8.PubMedCrossRefGoogle Scholar
  19. Leeper, R. (1935). A study of a neglected portion of the field of learning: The development of sensory organization. Journal of Genetic Psychology, 46, 41–75.Google Scholar
  20. Leopold, D. A., & Logothetis, N. K. (1999). Multistable phenomena: Changing views in perception. Trends in Cognitive Sciences, 3, 254–264.PubMedCrossRefGoogle Scholar
  21. Liebert, R. M., & Burk, B. (1985). Voluntary control of reversible figures. Perceptual and Motor Skills, 61, 1307–1310.PubMedGoogle Scholar
  22. Long, G. M., & Toppino, T. C. (1981). Multiple representations of the same reversible figure: Implications for cognitive decisional interpretations. Perception, 10, 231–234.PubMedGoogle Scholar
  23. Long, G. M., & Toppino, T. C. (2004). The enduring interest in perceptual ambiguity: Alternating views of reversible figures. Psychological Bulletin, 130, 748–768PubMedCrossRefGoogle Scholar
  24. Long, G. M., Toppino, T. C., & Kostenbauder, J. F. (1983). As the cube turns: Evidence for two processes in the perception of a dynamic reversible figure. Perception & Psychophysics, 34, 29–38.Google Scholar
  25. Long, G. M., Toppino, T. C., & Mondin, G. W. (1992). Prime time: Fatigue and set effects in the perception of reversible figures. Perception & Psychophysics, 52, 609–616.Google Scholar
  26. Medin, D. L., Ross, B. H., & Markman, A. B. (2001). Cognitive psychology (3rd ed.). Fort Worth, TX: Harcourt.Google Scholar
  27. Peterson, M. A., & Gibson, B. S. (1991). Directing spatial attention within an object: Altering the functional equivalence of shape descriptions. Journal of Experimental Psychology: Human Perception and Performance, 17, 170–182).PubMedCrossRefGoogle Scholar
  28. Rock, I. (1975). An introduction to perception. New York: Macmillan.Google Scholar
  29. Rubin, E. (1958). Figure and ground. In D. C. Beardslee & M. Wertheimer (Eds. & Trans.), Readings in perception (pp. 35–101). Princeton, NJ: Van Nostrand. (Original work published in 1915).Google Scholar
  30. Suzuki, S., & Peterson, M. A. (2000). Multiplicative effects of intention on the perception of bistable apparent motion. Psychological Science, 11, 202–209.PubMedCrossRefGoogle Scholar
  31. Tong, F. (2003). Primary visual cortex and visual awareness. Nature Reviews/Neuroscience, 4, 219–229.CrossRefGoogle Scholar
  32. Toppino, T. C. (2003). Reversible-figure perception: Mechanisms of intentional control. Perception & Psychophysics, 65, 1285–1295.Google Scholar
  33. Toppino, T. C., & Long, G. M. (1987). Selective adaptation with reversible figures: Don’t change that channel. Perception & Psychophysics, 42, 37–48.Google Scholar
  34. Tsal, Y., & Kolbert, L. (1985). Disambiguating ambiguous figures by selective attention. Quarterly Journal of Experimental Psychology, 37A, 25–37.Google Scholar
  35. Von Grunau, M. W., Wiggin, S., & Reed, M. (1984). The local character of perspective organization. Perception & Psychophysics, 35, 319–324.Google Scholar

Copyright information

© Springer-Verlag Tokyo 2005

Authors and Affiliations

  • Thomas C. Toppino
    • 1
  • Gerald M. Long
    • 1
  1. 1.Villanova UniversityUSA

Personalised recommendations