Skip to main content

Top-Down and Bottom-Up Processes in the Perception of Reversible Figures: Toward a Hybrid Model

  • Chapter
Dynamic Cognitive Processes

Summary

Reversible figures such as the Necker cube are ambiguous visual patterns that support at least two markedly different perceptual organizations. During a period of continuous viewing, observers’ conscious experience fluctuates, alternating between the possible interpretations. Attempts to explain this multistable perceptual character of reversible figures traditionally have attributed reversals to either bottom-up (stimulus driven) or top-down (conceptually-driven) processes. In the former case, perceptual fluctuations are attributed to the alternating fatigue and recovery of competing cortical organizations. In the latter case, perception is thought to be analogous to a hypothesis-testing or problem-solving process that successively considers alternative “solutions” to the perceptual puzzle represented by a reversible figure. We argue for a hybrid theoretical framework in which both types of processes contribute to figure reversals. By explicitly recognizing the contributions of both lower-level sensory processes and higher-level cognitive processes, the hybrid approach can resolve apparent conflicts in the reversible figure literature by calling attention to the fact that different viewing conditions can differentially engage top-down and bottom-up processes. The approach also provides a framework for future research, encouraging work that addresses how bottom-up and top-down processes are coordinated and how their effects are integrated in determining conscious perceptual experience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ammons, R. B., Ulrich, P., & Ammons, C. H. (1959). Voluntary control of perception of depth in a two-dimensional drawing. Proceedings of the Montana Academy of Sciences, 19, 160–168.

    Google Scholar 

  • Andrews, T. J., Schluppeck, D., Homfray, D., Matthews, P., & Blakemore, C. (2002). Activity in the fusiform gyrus predicts conscious perception of Rubin’s Vase-Face illusion. NeuroImage, 17, 890–901.

    Article  PubMed  Google Scholar 

  • Attneave, F. (1971). Multistability in perception. Scientific American, 225, 62–71.

    Article  Google Scholar 

  • Babich, S., & Standing, L. (1981). Satiation effects with reversible figures. Perceptual and Motor Skills, 52, 203–210.

    PubMed  Google Scholar 

  • Boring, E. G. (1930). A new ambiguous figure. American Journal of Psychology, 42, 444–445.

    Article  Google Scholar 

  • Boring, E. G. (1942). Sensation and perception in the history of experimental psychology. New York: Appleton Century.

    Google Scholar 

  • Bruner, J. S., & Minturn, A. L. (1955). Perceptual identification and perceptual organization. Journal of General Psychology, 53, 21–28.

    Article  Google Scholar 

  • DiLollo, V., Enns, J. T., & Rensink, R. A. (2000). Competition for consciousness among visual events: The psychophysics of reentrant visual processes. Journal of Experimental Psychology: General, 129, 481–507.

    Article  Google Scholar 

  • Dornic, S. (1967). Measurement of satiation in reversible figures. Studia Psychologica, 9, 18–24.

    Google Scholar 

  • Gale, A. G., & Findlay, J. M. (1983). Eye movement patterns in viewing ambiguous figures. In R. Groner, C. Menz, D. F. Fisher, & R. A. Monty (Eds.), Eye movements and psychological functions: International views (pp. 145–168). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Garcia-Perez, M. A. (1989). Visual inhomogeneity and eye movements in multistable perception. Perception & Psychophysics, 46, 397–400.

    Google Scholar 

  • Gregory, R. L. (1974). Choosing a paradigm for perception. In E. C. Carterette & M. P. Friedman (Eds.), Handbook of perception. Volume 1: Historical and philosophical roots of perception (pp. 225–283). New York: Academic Press.

    Google Scholar 

  • Harris, J. P. (1980). How does adaptation to disparity affect the perception of reversible figures? American Journal of Psychology, 93, 445–457.

    Article  PubMed  Google Scholar 

  • Helmholtz, H. von (1962). Handbuch der Physiologischen Optik Vol. III. (Third ed.). (J. P. C. Southall, Trans.). New York: Dover. (Original work published 1910).

    Google Scholar 

  • Kawabata, N. (1986). Attention and depth perception. Perception, 15, 563–572.

    PubMed  Google Scholar 

  • Kawabata, N., & Mori, T. (1992). Disambiguating ambiguous figures by a model of selective attention. Biological Cybernetics, 67, 417–425.

    Article  PubMed  Google Scholar 

  • Kohler, W. (1940). Dynamics in psychology. New York: Liveright.

    Google Scholar 

  • Kornmeier, J., & Bach, M. (2004). Early neural activity in Necker-cube reversal: Evidence for low-level processing of a gestalt phenomenon. Psychophysiology, 41, 1–8.

    Article  PubMed  Google Scholar 

  • Leeper, R. (1935). A study of a neglected portion of the field of learning: The development of sensory organization. Journal of Genetic Psychology, 46, 41–75.

    Google Scholar 

  • Leopold, D. A., & Logothetis, N. K. (1999). Multistable phenomena: Changing views in perception. Trends in Cognitive Sciences, 3, 254–264.

    Article  PubMed  Google Scholar 

  • Liebert, R. M., & Burk, B. (1985). Voluntary control of reversible figures. Perceptual and Motor Skills, 61, 1307–1310.

    PubMed  Google Scholar 

  • Long, G. M., & Toppino, T. C. (1981). Multiple representations of the same reversible figure: Implications for cognitive decisional interpretations. Perception, 10, 231–234.

    PubMed  Google Scholar 

  • Long, G. M., & Toppino, T. C. (2004). The enduring interest in perceptual ambiguity: Alternating views of reversible figures. Psychological Bulletin, 130, 748–768

    Article  PubMed  Google Scholar 

  • Long, G. M., Toppino, T. C., & Kostenbauder, J. F. (1983). As the cube turns: Evidence for two processes in the perception of a dynamic reversible figure. Perception & Psychophysics, 34, 29–38.

    Google Scholar 

  • Long, G. M., Toppino, T. C., & Mondin, G. W. (1992). Prime time: Fatigue and set effects in the perception of reversible figures. Perception & Psychophysics, 52, 609–616.

    Google Scholar 

  • Medin, D. L., Ross, B. H., & Markman, A. B. (2001). Cognitive psychology (3rd ed.). Fort Worth, TX: Harcourt.

    Google Scholar 

  • Peterson, M. A., & Gibson, B. S. (1991). Directing spatial attention within an object: Altering the functional equivalence of shape descriptions. Journal of Experimental Psychology: Human Perception and Performance, 17, 170–182).

    Article  PubMed  Google Scholar 

  • Rock, I. (1975). An introduction to perception. New York: Macmillan.

    Google Scholar 

  • Rubin, E. (1958). Figure and ground. In D. C. Beardslee & M. Wertheimer (Eds. & Trans.), Readings in perception (pp. 35–101). Princeton, NJ: Van Nostrand. (Original work published in 1915).

    Google Scholar 

  • Suzuki, S., & Peterson, M. A. (2000). Multiplicative effects of intention on the perception of bistable apparent motion. Psychological Science, 11, 202–209.

    Article  PubMed  Google Scholar 

  • Tong, F. (2003). Primary visual cortex and visual awareness. Nature Reviews/Neuroscience, 4, 219–229.

    Article  Google Scholar 

  • Toppino, T. C. (2003). Reversible-figure perception: Mechanisms of intentional control. Perception & Psychophysics, 65, 1285–1295.

    Google Scholar 

  • Toppino, T. C., & Long, G. M. (1987). Selective adaptation with reversible figures: Don’t change that channel. Perception & Psychophysics, 42, 37–48.

    Google Scholar 

  • Tsal, Y., & Kolbert, L. (1985). Disambiguating ambiguous figures by selective attention. Quarterly Journal of Experimental Psychology, 37A, 25–37.

    Google Scholar 

  • Von Grunau, M. W., Wiggin, S., & Reed, M. (1984). The local character of perspective organization. Perception & Psychophysics, 35, 319–324.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Toppino, T.C., Long, G.M. (2005). Top-Down and Bottom-Up Processes in the Perception of Reversible Figures: Toward a Hybrid Model. In: Ohta, N., MacLeod, C.M., Uttl, B. (eds) Dynamic Cognitive Processes. Springer, Tokyo. https://doi.org/10.1007/4-431-27431-6_3

Download citation

Publish with us

Policies and ethics