Advertisement

Acquisition of Long-Term Visual Representations: Psychological and Neural Mechanisms

  • Marlene Behrmann
  • Joy Geng
  • Chris Baker

Summary

How do we so rapidly achieve an organized, coherent visual percept of our superficially chaotic world? One way of reducing the complexity of the input is to take advantage of the statistical regularities and regular co-occurrences between aspects of objects and between objects and their spatial locations. In this chapter, converging data obtained from normal and brain-damaged individuals, as well as from single unit recording studies in monkeys, are presented, all of which address the psychological and neural mechanisms associated with statistical learning. The first section deals with learning regularities associated with particular spatial locations, presumably a function of the dorsal ‘where’ stream and data from normal individuals and from patients with hemispatial neglect are presented. The second section reports the findings from human and monkey studies, which show how statistical contingencies of the visual environment are reflected in behavior and how neurons in monkey inferotemporal cortex, the ventral “what” stream, appear to mediate these statistical effects. Taken together, using data from a variety of methodologies, this work attests to the flexibility and robustness of the visual system and sheds light on the way in which perceptual organization operates to convert raw input into long-term visual representations.

Key words

Vision perceptual organization visual learning neuropsychology agnosia neurophysiology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aglioti, S., Smania, N., Barbieri, C., & Corbetta, M. (1997). Influence of stimulus salience and attentional demands on visual search patterns in hemispatial neglect. Brain and Cognition, 34, 388–403.PubMedCrossRefGoogle Scholar
  2. Andersen, R. A., Snyder, L. H., Bradley, D. C., & Xing, J. (1997). Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annual Review of Neuroscience, 20, 303–330.PubMedCrossRefGoogle Scholar
  3. Baker, C., Behrmann, M., & Olson, C. (2002). Impact of visual discrimination training on the representation of parts and wholes in monkey inferotemporal cortex. Nature Neuroscience, 5, 1210–1216.PubMedCrossRefGoogle Scholar
  4. Baker, C., Olson, C., & Behrmann, M. (2004). Role of attention and perceptual grouping in visual statistical learning. Psychological Science, 15, 460–466.PubMedCrossRefGoogle Scholar
  5. Bartolomeo, P., & Chokron, S. (2001). Levels of impairment in unilateral neglect. In F. Boller & J. Grafman (Eds.), Handbook of Neuropsychology (Vol. 4, pp. 67–98). North-Holland: Elsevier Science.Google Scholar
  6. Basso, M. A., & Wurtz, R. H. (1998). Modulation of neuronal activity in superior colliculus by changes in target probability. Journal of Neuroscience, 18, 7519–7534.PubMedGoogle Scholar
  7. Baum, W. M. (1979). Matching, undermatching, and overmatching in studies of choice. Journal of the Experimental Analysis of Behavior, 32, 269–281.PubMedCrossRefGoogle Scholar
  8. Behrmann, M., Ebert, P., & Black, S. E. (2004). Hemispatial neglect and visual search: A large scale analysis from the Sunnybrook Stroke Study. Cortex, 40, 247–264.PubMedGoogle Scholar
  9. Behrmann, M., Ghiselli-Crippa, T., Sweeney, J., Dimatteo, I., & Kass, R. (2002). Mechanisms underlying spatial representation revealed through studies of hemispatial neglect. Journal of Cognitive Neuroscience, 14, 272–290.PubMedCrossRefGoogle Scholar
  10. Bisiach, E., & Luzzatti, C. (1978). Unilateral neglect of representational space. Cortex, 14, 129–133.PubMedGoogle Scholar
  11. Bisiach, E., & Vallar, G. (2000). Unilateral neglect in humans. In F. Boller & J. Grafman (Eds.), Handbook of Neuropsychology (2nd ed., Vol. 1, pp. 459–502). North-Holland, Amsterdam: Elsevier Science.Google Scholar
  12. Chun, M. (2002). Contextual cueing of visual attention. Trends in Cognitive Science, 4, 170–178.CrossRefGoogle Scholar
  13. Chun, M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36, 28–71.PubMedCrossRefGoogle Scholar
  14. Chun, M., & Jiang, Y. (1999). Top-down attentional guidance based on implicit learning of visual covariation. Psychological Science, 10, 360–365.CrossRefGoogle Scholar
  15. Edelman, S., Hiles, B. P., Yang, H., & Intrator, N. (2002). Probabilistic principles in unsupervised learning of visual structure: Human data and a model. In T. G. Dietterich, S. Becker, & Z. Gharamani (Eds.), Advances in Neural Information Processing Systems (Vol. 14, pp. 19–26). Cambridge, MA: MIT Press.Google Scholar
  16. Eglin, M., Robertson, L. C., & Knight, R. T. (1989). Visual search performance in the neglect syndrome. Journal of Cognitive Neuroscience, 1, 372–385.CrossRefGoogle Scholar
  17. Esterman, M., McGlinchey-Berroth, R., & Milberg, W. (2000). Preattentive and attentive visual search in individuals with hemispatial neglect. Neuropsychology, 14, 599–611.PubMedCrossRefGoogle Scholar
  18. Fink, G. R., Driver, J., Rorden, C., Baldeweg, T., & Dolan, R. J. (2000). Neural consequences of competing stimuli in both visual hemifields: A physiological basis for visual extinction. Annals of Neurology, 47, 440–446.PubMedCrossRefGoogle Scholar
  19. Fiser, J., & Aslin, R. N. (2001). Unsupervised statistical learning of higher-order spatial structures from visual scenes. Psychological Science, 12, 499–504.PubMedCrossRefGoogle Scholar
  20. Fiser, J., & Aslin, R. N. (2002a). Statistical learning of higher-order temporal structure from visual shape sequences. Journal of Experimental Psychology: Learning, Memory and Cognition, 28, 458–467.CrossRefGoogle Scholar
  21. Fiser, J., & Aslin, R. N. (2002b). Statistical learning of new visual feature combinations by infants. Proceedings of National Academy of Sciences USA, 99, 15822–15826.CrossRefGoogle Scholar
  22. Geng, J. J., & Behrmann, M. (2002). Probability cueing of target location facilitates visual search implicitly in normal participants and patients with hemispatial neglect. Psychological Science, 13, 520–525.PubMedCrossRefGoogle Scholar
  23. Gore, C. L., Rodriguez, D. P., & Baylis, G. C. (2001/2002). Deficits of motor intention following parietal lesions. Behavioral Neurology, 13, 29–37.PubMedGoogle Scholar
  24. Greggers, U., & Mauelshagen, J. (1997). Matching behavior of honeybees in a multiple-choice situation: The differential effect of environmental stimuli on the choice process. Animal Learning & Behavior, 25, 458–472.Google Scholar
  25. Halligan, P. W., Manning, L., & Marshall, J. C. (1991). Hemispheric activations vs spatio-motor cueing in visual neglect: A case study. Neuropsychologia, 29, 165–176.PubMedCrossRefGoogle Scholar
  26. Handy, T. C., Green, V., Klein, R. M., & Mangun, G. R. (2001). Combined expectancies: Event-related potentials reveal the early benefits of spatial attention that are obscured by reaction time measures. Journal of Experimental Psychology: Human Perception & Performance, 27, 303–317.CrossRefGoogle Scholar
  27. Hauser, M. D., Newport, E. L., & Aslin, R. N. (2001). Segmentation of the speech stream in a nonhuman primate: Statistical learning in cotton-top tamarins. Cognition, 78, B53–B64.PubMedCrossRefGoogle Scholar
  28. Herrnstein, R. J. (1961). Relative and absolute strength of response as a function of frequency of reinforcement. Journal of the Experimental Analysis of Behavior, 4, 267–272.PubMedCrossRefGoogle Scholar
  29. Hoffman, J., & Kunde, W. (1999). Location-specific target expectancies in visual search. Journal of Experimental Psychology: Human Perception and Performance, 25, 1127–1141.CrossRefGoogle Scholar
  30. Hornak, J. (1992). Ocular exploration in the dark by patients with visual neglect. Neuropsychologia, 30, 547–552.PubMedCrossRefGoogle Scholar
  31. Kirkham, N. Z., Slemmer, J. A., & Johnson, S. P. (2002). Visual statistical learning in infancy: Evidence for a domain general learning mechanism. Cognition, 83, B35–42.PubMedCrossRefGoogle Scholar
  32. Lewicki, P., Czyzewska, M, & Hoffman, H. (1987). Unconscious acquisition of complex procedural knowledge. Journal of Experimental Psychology: Learning, Memory, & Cognition, 13, 523–530.CrossRefGoogle Scholar
  33. Lin, K. C., Cermak, S. A., Kinsbourne, M., & Trombly, C. A. (1996). Effects of left-sided movements on line bisection in unilateral neglect. Journal of the International Neuropsychological Society, 2, 404–411.PubMedCrossRefGoogle Scholar
  34. Maljkovic, V., & Nakayama, K. (1996). Priming of popout II: The role of position. Perception and Psychophysics, 58, 977–991.PubMedGoogle Scholar
  35. Mattingley, J. B., Husain, M., Rorden, C., Kennard, C., & Driver, J. (1998). Motor role of human inferior parietal lobe revealed in unilateral neglect patients. Nature, 392, 179–182.PubMedCrossRefGoogle Scholar
  36. Mayr, U. (1996). Spatial attention and implicit sequence learning: Evidence for independent learning of spatial and nonspatial sequences. Journal of Experimental Psychology: Learning, Memory, & Cognition, 22, 350–364.CrossRefGoogle Scholar
  37. Messinger, A., Squire, L. R., Zola, S. M., & Albright, T. D. (2001). Neuronal representations of stimulus associations develop in the temporal lobe during learning. Proceedings of the National Academy of Sciences, 98, 12239–12244.CrossRefGoogle Scholar
  38. Palmer, S. E., & Rock, I. (1994). On the nature and order of organizational processing: A reply to Peterson. Psychonomic Bulletin and Review, 1, 515–519.Google Scholar
  39. Platt, M. L., & Glimcher, P. W. (1999). Neural correlates of decision variables in parietal cortex. Nature, 400, 233–238.PubMedCrossRefGoogle Scholar
  40. Riddoch, M. J., & Humphreys, G. W. (1983). The effect of cueing on unilateral neglect. Neuropsychologia, 21, 589–599.PubMedCrossRefGoogle Scholar
  41. Riddoch, M. J., & Humphreys, G. W. (1987). Perceptual and action systems in unilateral visual neglect. In M. Jeannerod (Ed.), Neurophysiological and neuropsychological aspects of spatial neglect (pp. 151–181). New York: Elsevier.Google Scholar
  42. Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274, 1926–1928.PubMedCrossRefGoogle Scholar
  43. Saffran, J. R., Johnson, E. K., Aslin, R. N., & Newport, E. L. (1999). Statistical learning of tone sequences by human infants and adults. Cognition, 70, 27–52.PubMedCrossRefGoogle Scholar
  44. Saffran, J. R., Newport, E. L., Aslin, R. N., Tunick, R. A., & Barrueco, S. (1997). Incidental language learning: Listening (and learning) out of the corner of your ear. Psychological Science, 8, 101–105.CrossRefGoogle Scholar
  45. Saiki, J., & Hummel, J. E. (1998). Connectedness and the integration of parts with relations in shape perception. Journal of Experimental Psychology: Human Perception and Performance, 24, 227–251.PubMedCrossRefGoogle Scholar
  46. Sakai, K., & Miyashita, Y. (1991). Neural organization for the long-term memory of paired associates. Nature, 354, 152–155.PubMedCrossRefGoogle Scholar
  47. Sengpiel, F., & Huebener, M. (1999). Spotlight on the primary visual cortex. Current Biology, 9, R318–R321.PubMedCrossRefGoogle Scholar
  48. Shaw, M. L., & Shaw, P. (1977). Optimal allocation of cognitive resources to spatial locations. Journal of Experimental Psychology: Human Perception & Performance, 3, 201–211.CrossRefGoogle Scholar
  49. Smith, L. B., Thelen, E., Titzer, R., & McLin, D. (1999). Knowing in the context of acting: The task dynamics of the A-not-B error. Psychological Review, 106, 235–260.PubMedCrossRefGoogle Scholar
  50. Wilson, B., Cockburn, J., & Halligan, P. W. (1987). Behavioral inattention test. Suffolk, England: Thames Valley Test Company.Google Scholar

Copyright information

© Springer-Verlag Tokyo 2005

Authors and Affiliations

  • Marlene Behrmann
    • 1
  • Joy Geng
    • 1
  • Chris Baker
    • 1
  1. 1.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations