Skip to main content

Summary

Atherosclerosis is responsible for more than half of all deaths in western countries. Numerous studies have reported that exuberant accumulation of smooth muscle cells play a principal role in the pathogenesis of vascular diseases. It has been assumed that smooth muscle cells derived from the adjacent medial layer migrate, proliferate and synthesize extracellular matrix. Although much effort has been devoted, targeting migration and proliferation of medial smooth muscle cells, no effective therapy to prevent occlusive vascular remodeling has been established. Recently, we reported that bone marrow cells substantially contribute to the pathogenesis of vascular diseases, in models of post-angioplasty restenosis, graft vasculopathy and hyperlipidemia-induced atherosclerosis. It was suggested that bone marrow cells may have the potential to give rise to vascular progenitor cells that home in the damaged vessels and differentiate into smooth muscle cells or endothelial cells, thereby contributing to vascular repair, remodeling, and lesion formation. This article overviews recent findings on circulating vascular precursors and describes potential therapeutic strategies for vascular diseases, targeting mobilization, homing, differentiation and proliferation of circulating progenitor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  PubMed  CAS  Google Scholar 

  • Billingham ME (1987) Cardiac transplant atherosclerosis. Transplant Proc 19:19–25

    PubMed  CAS  Google Scholar 

  • Blau H M, Brazelton T R, Weimann J M (2001) The evolving concept of a stem cell: entity or function? Cell 105:829–841

    Article  PubMed  CAS  Google Scholar 

  • Campbell J H, Tachas G, Black M J, Cockerill G, Campbell G R (1991) Molecular biology of vascular hypertrophy. Basic Res Cardiol 86:3–11

    PubMed  CAS  Google Scholar 

  • Grimm P C, Nickerson P, Jeffery J, Savani R C, Gough J, McKenna R M, Stern E, Rush D N (2001) Neointimal and tubulointerstitial infiltration by recipient mesenchymal cells in chronic renal-allograft rejection. N Engl J Med 345:93–97

    Article  PubMed  CAS  Google Scholar 

  • Hill J M, Zalos G, Halcox J P, Schenke W H, Waclawiw M A, Quyyumi A A, Finkel T (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593–600

    Article  PubMed  Google Scholar 

  • Hillebrands J L, Klatter F A, van Den Hurk, B M, Popa E R, Nieuwenhuis P, Rozing J (2001) Origin of neointimal endothelium and alpha-actin-positive smooth muscle cells in transplant arteriosclerosis. J Clin Invest 107:1411–1422

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Davison F, Ludewig B, Erdel M, Mayr M, Url M, Dietrich H, Xu Q (2002) Smooth muscle cells in transplant atherosclerotic lesions are originated from recipients, but not bone marrow progenitor cells. Circulation 106:1834–1839

    Article  PubMed  Google Scholar 

  • Kaushal S, Amiel G E, Guleserian K J, Shapira O M, Perry T, Sutherland F W, Rabkin E, Moran A M, Schoen F J, Atala A, Soker S, Bischoff J, Mayer J E, Jr (2001) Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med 7:1035–1040

    Article  PubMed  CAS  Google Scholar 

  • Reya T, Morrison S J, Clarke M F, Weissman I L (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  PubMed  CAS  Google Scholar 

  • Ross R (1999) Atherosclerosis-An inflammatory disease. N Eng J Med 340:115–126

    Article  CAS  Google Scholar 

  • Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362:801–809

    Article  PubMed  CAS  Google Scholar 

  • Saiura A, Sata M, Washida M, Sugawara Y, Hirata Y, Nagai R, Makuuchi M (2003) Little evidence for cell fusion between recipient and Donor-Derived cells. J Surg Res 113:222–227

    Article  PubMed  Google Scholar 

  • Saiura A, Sata M, Hirata Y, Nagai R, Makuuchi M (2001) Circulating smooth muscle progenitor cells contribute to atherosclerosis. Nat Med 7:382–383

    Article  PubMed  CAS  Google Scholar 

  • Sata M (2003) Circulating vascular progenitor cells contribute to vascular repair, remodeling, and lesion formation. Trends Cardiovasc Med 13:249–253

    Article  PubMed  Google Scholar 

  • Sata M, Tanaka K, Ishizaka N, Hirata Y, Nagai R (2003) Absence of p53 Leads to Accelerated Neointimal Hyperplasia After Vascular Injury. Arterioscler Thromb Vasc Biol 23:1548–1552

    Article  PubMed  CAS  Google Scholar 

  • Sata M, Saiura A, Kunisato A, Tojo A, Okada S, Tokuhisa T, Hirai H, Makuuchi M, Hirata Y, Nagai R (2002) Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med 8:403–409

    Article  PubMed  CAS  Google Scholar 

  • Sata M, Sugiura S, Yoshizumi M, Ouchi Y, Hirata Y, Nagai R (2001) Acute and chronic smooth muscle cell apoptosis after mechanical vascular injury can occur independently of the Fas-death pathway. Arterioscler Thromb Vasc Biol 21:1733–1737

    PubMed  CAS  Google Scholar 

  • Sata M, Maejima Y, Adachi F, Fukino K, Saiura A, Sugiura S, Aoyagi T, Imai Y, Kurihara H, Kimura K, Omata M, Makuuchi M, Hirata Y., Nagai R (2000) A mouse model of vascular injury that induces rapid onset of medial cell apoptosis followed by reproducible neointimal hyperplasia. J Mol Cell Cardiol 32:2097–2104

    Article  PubMed  CAS  Google Scholar 

  • Shimizu K, Sugiyama S, Aikawa M, Fukumoto Y, Rabkin E, Libby P, Mitchell R N (2001) Host bone-marrow cells are a source of donor intimal smooth-muscle-like cells in murine aortic transplant arteriopathy. Nat Med 7:738–741

    Article  PubMed  CAS  Google Scholar 

  • Simper D, Stalboerger P G, Panetta C J, Wang S, Caplice N M (2002) Smooth muscle progenitor cells in human blood. Circulation 106:1199–1204

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Sata M, Hirata Y, Nagai R (2003) Diverse contribution of bone marrow cells to neointimal hyperplasia after mechanical vascular injuries. Circ Res 93:783–790

    Article  PubMed  CAS  Google Scholar 

  • Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz D M, Nakano Y, Meyer E M, Morel L, Petersen B E, Scott E W (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416:542–545

    Article  PubMed  CAS  Google Scholar 

  • Tricot O, Mallat Z, Heymes C, Belmin J, Leseche G, Tedgui A (2000) Relation between endothelial cell apoptosis and blood flow direction in human atherosclerotic plaques. Circulation 101:2450–2453

    PubMed  CAS  Google Scholar 

  • Wang X, Willenbring H, Akkari Y, Torimaru Y, Foster M, Al-Dhalimy M, Lagasse E, Finegold M, Olson S, Grompe M (2003) Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422:897–901

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Sata, M., Nagai, R. (2005). Vascular Regeneration and Remodeling by Circulating Progenitor Cells. In: Mori, H., Matsuda, H. (eds) Cardiovascular Regeneration Therapies Using Tissue Engineering Approaches. Springer, Tokyo. https://doi.org/10.1007/4-431-27378-6_10

Download citation

  • DOI: https://doi.org/10.1007/4-431-27378-6_10

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-23925-3

  • Online ISBN: 978-4-431-27378-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics