Skip to main content

The Effect of Light and Gravity on Hypocotyl Growth Orientation

  • Chapter
Light Sensing in Plants

Abstract

Light energy capture by leaves, water, and mineral absorption by roots are crucial for plant survival. To guide their growth plant organs sense a variety of environ- mental cues, among which the direction of gravity and the direction of light are the most important. Other environmental factors dictating tropic responses like moisture and touch play minor roles in land plants and are discussed in a recent review ([Blancaflor and Masson 2003]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Behringer FJ, Lomax TL (1999) Genetic analysis of the roles of phytochromes A and B1 in the reversed gravitropic response of the lz-2 tomato mutant. Plant Cell Environ 22: 551–558

    Article  PubMed  CAS  Google Scholar 

  • Blakeslee JJ, Bandyopadhyay A, Peer WA, Makam SN, Murphy AS (2004) Relocalization of the PIN1 auxin efflux facilitator plays a role in phototropic responses. Plant Physiol 134: 28–31

    Article  PubMed  CAS  Google Scholar 

  • Blancaflor EB, Masson PH (2003) Plant gravitropism. Unraveling the ups and downs of a complex process. Plant Physiol 133: 1677–1690

    Article  PubMed  CAS  Google Scholar 

  • Boonsirichai K, Guan C, Chen R, Masson PH (2002) Root gravitropism: an experimental tool to investigate basic cellular and molecular processes underlying mechanosensing and signal transmission in plants. Annu Rev Plant Biol 53: 421–447

    Article  PubMed  CAS  Google Scholar 

  • Briggs WR, Christie JM (2002) Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci 7: 204–210

    Article  PubMed  CAS  Google Scholar 

  • Fairchild CD, Schumaker MA, Quail PH (2000) HFR1 encodes an atypical bHLH protein that acts in phytochrome A signal transduction. Genes Dev 14: 2377–2391

    PubMed  CAS  Google Scholar 

  • Firn RD, Wagstaff C, Digby J (2000) The use of mutants to probe models of gravitropism. J Exp Bot 51: 1323–1340

    Article  PubMed  CAS  Google Scholar 

  • Friml J (2003) Auxin transport—shaping the plant. Curr Opin Plant Biol 6: 7–12

    Article  PubMed  CAS  Google Scholar 

  • Fuchs I, Philippar K, Ljung K, Sandberg G, Hedrich R (2003) Blue light regulates an auxininduced K+-channel gene in the maize coleoptile. Proc Natl Acad Sci USA 100: 11795–11800

    Article  PubMed  CAS  Google Scholar 

  • Grolig F, Eibel P, Schimek C, Schapat T, Dennison DS, Galland PA (2000) Interaction between gravitropism and phototropism in sporangiophores of Phycomyces blakesleeanus. Plant Physiol 123: 765–776

    Article  PubMed  CAS  Google Scholar 

  • Guan C, Rosen ES, Boonsirichai K, Poff KL, Masson PH (2003) The ARG1-LIKE2 gene of Arabidopsis functions in a gravity signal transduction pathway that is genetically distinct from the PGM pathway. Plant Physiol 133: 100–112

    Article  PubMed  CAS  Google Scholar 

  • Halliday KJ, Fankhauser C (2003) Phytochrome-hormonal signalling networks. New Phytol 157: 449–463

    Article  CAS  Google Scholar 

  • Hangarter RP (1997) Gravity, light and plant form. Plant Cell Environ 20: 796–800

    Article  PubMed  CAS  Google Scholar 

  • Harper RM, Stowe-Evans EL, Luesse DR, Muto H, Tatematsu K, Watahiki MK, Yamamoto K, Liscum E (2000) The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell 12: 757–770

    Article  PubMed  CAS  Google Scholar 

  • Inada S, Ohgishi M, Mayama T, Okada K, Sakai T (2004) RPT2 is a signal transducer involved in phototropic response and stomatal opening by association with phototropin 1 in Arabidopsis thaliana. Plant Cell 16: 887–896

    Article  PubMed  CAS  Google Scholar 

  • Kern VD, Sack FD (1999) Irradiance-dependent regulation of gravitropism by red light in protonemata of the moss Ceratodon purpureus. Planta 209: 299–307

    Article  PubMed  CAS  Google Scholar 

  • Kim YM, Woo JC, Song PS, Soh MS (2002) HFR1, a phytochrome A-signalling component, acts in a separate pathway from HY5, downstream of COP1 in Arabidopsis thaliana. Plant J 30: 711–719

    Article  PubMed  CAS  Google Scholar 

  • Kiss JZ, Correll MJ, Mullen JL, Hangarter RP, Edelmann RE (2003) Root phototropism: how light and gravity interact in shaping plant form. Gravit Space Biol Bull 16: 55–60

    PubMed  Google Scholar 

  • Lamparter T, Esch H, Cove D, Hughes J, Hartmann E (1996) Aphototropic mutants of the moss Ceratodon purpureus with spectrally normal and with spectrally dysfunctional phytochrome. Plant Cell Environ 19: 560–568

    Article  Google Scholar 

  • Lamparter T, Hughes J, Hartmann E (1998) Blue light-and genetically-reversed gravitropic response in protonemata of the moss Ceratodon purpureus. Planta 206: 95–102

    Article  PubMed  CAS  Google Scholar 

  • Lariguet P, Fankhauser C (2004) Hypocotyl growth orientation in blue light is determined by phytochrome A inhibition of gravitropism and phototropin promotion of phototropism. Plant J 40: 826–834

    Article  PubMed  CAS  Google Scholar 

  • Lee HY, Bahn SC, Kang YM, Lee KH, Kim HJ, Noh EK, Palta JP, Shin JS, Ryu SB (2003) Secretory low molecular weight phospholipase A2 plays important roles in cell elongation and shoot gravitropism in Arabidopsis. Plant Cell 15: 1990–2002

    Article  PubMed  CAS  Google Scholar 

  • Liscum E, Hodgson DW, Campbell TJ (2003) Blue light signaling through the cryptochromes and phototropins. So that’s what the blues is all about. Plant Physiol 133: 1429–1436

    Article  PubMed  CAS  Google Scholar 

  • Madlung A, Behringer FJ, Lomax TL (1999) Ethylene plays multiple nonprimary roles in modulating the gravitropic response in tomato. Plant Physiol 120: 897–906

    Article  PubMed  CAS  Google Scholar 

  • Moseyko N, Zhu T, Chang HS, Wang X, Feldman LJ (2002) Transcription profiling of the early gravitropic response in Arabidopsis using high-density oligonucleotide probe microarrays. Plant Physiol 130: 720–728

    Article  PubMed  CAS  Google Scholar 

  • Noh B, Bandyopadhyay A, Peer WA, Spalding EP, Murphy AS (2003) Enhanced graviand phototropism in plant mdr mutants mislocalizing the auxin efflux protein PIN1. Nature 424: 999–1002

    Article  CAS  Google Scholar 

  • Ohgishi M, Saji K, Okada K, Sakai T (2004) Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis. Proc Natl Acad Sci USA 101: 2223–2228

    Article  PubMed  CAS  Google Scholar 

  • Quail PH (2002) Photosensory perception and signalling in plant cells: new paradigms? Curr Opin Cell Biol 14: 180–188

    Article  PubMed  CAS  Google Scholar 

  • Srinivas A, Behera RK, Kagawa T, Wada M, Sharma R (2004) High pigment1 mutation negatively regulates phototropic signal transduction in tomato seedlings. Plant Physiol 134: 790–800

    Article  PubMed  CAS  Google Scholar 

  • Stowe-Evans EL, Luesse DR, Liscum E (2001) The enhancement of phototropin-induced phototropic curvature in Arabidopsis occurs via a photoreversible phytochrome Adependent modulation of auxin responsiveness. Plant Physiol 126: 826–834

    Article  PubMed  CAS  Google Scholar 

  • Tatematsu K, Kumagai S, Muto H, Sato A, Watahiki MK, Harper RM, Liscum E, Yamamoto KT (2004) MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana. Plant Cell 16: 379–393

    Article  PubMed  CAS  Google Scholar 

  • Whippo CW, Hangarter RP (2003) Second positive phototropism results from coordinated co-action of the phototropins and cryptochromes. Plant Physiol 132: 1499–1507

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Yamada Science Foundation and Springer-Verlag Tokyo

About this chapter

Cite this chapter

Lariguet, P., Fankhauser, C. (2005). The Effect of Light and Gravity on Hypocotyl Growth Orientation. In: Wada, M., Shimazaki, Ki., Iino, M. (eds) Light Sensing in Plants. Springer, Tokyo. https://doi.org/10.1007/4-431-27092-2_32

Download citation

Publish with us

Policies and ethics