Skip to main content

Phytochrome and COP1 Regulates Abundance of Phytochrome Interacting Factor 3

  • Chapter
Light Sensing in Plants
  • 1293 Accesses

Abstract

To sense the environmental factor light, plants have evolved different sensory photoreceptors ([Kendrick and Kronenberg 1994]). In Arabidopsis five members of a small gene family (PHYA to PHYE) encode the photoreceptor phytochromes ([Clack et al 1994]). Phytochromes are R/FR photoreversible chromoproteins, which form dimers with a molecular mass of ca. 120kDa per monomer and in which an open-chain tetrapyrrole chromophore is autocatalytically attached to the apoprotein ([Lagarias and Lagarias 1989], [Eichenberg et al 2000]). R induced formation of the FR absorbing active form of phytochrome (Pfr) initiates a signalling cascade which controls plant photomorphogenesis. Of these phytochromes, phyA has a very specific mode of action by controlling very low fluence responses (VLFR) and far-red high irradiance responses (HIR) ([Furuya and Schifer 1996]). VLFR is initiated even by a few seconds of starlight and is saturated at about μmol/m2, whereas HIR requires prolonged irradiation with continuous far-red light (cFR). In contrast to phyA, phyB-E mediate responses to continuous red light (cR) and show the R/FR reversible induction responses. Between light absorption by photoreceptors and physiological and developmental responses lies a web of interacting factors and interacting pathways, either directly involved in or otherwise impinging upon light signal transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Büche C, Poppe C, Schäfer E, Kretsch T (2000) eid1: A new Arabidopsis mutant hypersensitive in phytochrome A-dependent high-irradiance responses. Plant Cell 12: 547–558

    Article  PubMed  Google Scholar 

  • Clack T, Matthews S, Sharrock RA (1994) The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequence and expression of PHYD and PHYE. Plant Mol Biol 25: 413–417

    Article  PubMed  CAS  Google Scholar 

  • Dieterle M, Zhou YC, Schäfer E, Funk M, Kretsch T (2001) EID1, an F-box protein involved in phytochrome A-specific light signalling. Genes Dev 15: 939–944

    Article  PubMed  CAS  Google Scholar 

  • Dieterle M, Buche C, Schäfer E, Kretsch T (2003) Characterization of a novel nonconstitutive photomorphogenic cop1 allele. Plant Physiol 133: 1557–1564

    Article  PubMed  CAS  Google Scholar 

  • Eichenberg K, Baurle I, Paulo N, Sharrock RA, Rüdiger W, Schäfer E (2000) Arabidopsis phytochromes C and E have different spectral characteristics from those of phytochromes A and B. FEBS Lett 470: 107–112

    Article  PubMed  CAS  Google Scholar 

  • Furuya M, Schäfer E (1996) Photoperception and signalling of induction reactions by different phytochromes. Trends Plant Sci 1: 301–307

    Google Scholar 

  • Gil P, Kircher S, Adam E, Bury E, Kozma-Bognar L, Schäfer E, Nagy F (2000) Photocontrol of subcellular partitioning of phytochrome-B: GFP fusion protein in tobacco seedlings. Plant J 22: 135–145

    Article  PubMed  CAS  Google Scholar 

  • Gyula P, Schäfer E, Nagy F (2003) Light perception and signalling in higher plants. Curr Opin Plant Biol 6: 446–452

    Article  PubMed  CAS  Google Scholar 

  • Halliday KJ, Hudson M, Ni M, Qin M, Quail PH (1999) poc1: an Arabidopsis mutant perturbed in phytochrome signalling because of a T-DNA insertion in the promoter of PIF3, a gene encoding a phytochrome-interacting bHLH protein. Proc Natl Acad Sci USA 96: 5832–5837

    Article  PubMed  CAS  Google Scholar 

  • Harmer SL, Hoegenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290: 2110–2113

    Article  PubMed  CAS  Google Scholar 

  • Kendrick RE, Kronenberg GMH (eds) (1994) Photomorphogenesis in plants, 2nd edn. Kluwer, Dordrecht

    Google Scholar 

  • Kim L, Kircher S, Toth R, Adam E, Schäfer E, Nagy F (2000) Light-induced nuclear import of phytochrome-A: GFP fusion proteins is differentially regulated in transgenic tobacco and Arabidopsis. Plant J 22, 125–134

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Yi H, Choi G, Shin B, Song PS, Choi G (2003) Functional characterisation of phytochrome interacting factor 3 in phytochrome-mediated light signal transduction. Plant Cell 15: 2399–2407

    Article  PubMed  CAS  Google Scholar 

  • Kircher S, Kozma-Bognar L, Kim L, Adam E, Harter K, Schäfer E, Nagy F (1999) Light quality-dependent nuclear import of the plant photoreceptors phytochrome A and B. Plant Cell 11: 1445–1456

    Article  PubMed  CAS  Google Scholar 

  • Kircher S, Gil P, Kozma-Bognar L, Fejes E, Speth V, Husselstein-Muller T, Bauer D, Adam E, Schäfer E, Nagy F (2002) Nucleo-cytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D and E is differentially regulated by light and exhibits a diurnal rhythm. Plant Cell 25: 1222–1232

    Google Scholar 

  • Lagarias JC, Lagarias DM (1989) Selfassembly of synthetic phytochrome holoprotein in vivo. Proc Natl Acad Sci USA 86: 5778–5780

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Garcia JF, Huq E, Quail PH (2000) Direct targeting of light signals to a promoter element-bound transcription factor. Science 288: 859–863

    Article  PubMed  CAS  Google Scholar 

  • Matsushita T, Mochizuki N, Nagatani A (2003) Dimers of the N-terminal domain of phytochrome B are functional in the nucleus. Nature 424: 571–574

    Article  PubMed  CAS  Google Scholar 

  • Nagy F, Schäfer E (2002) Phytochromes control photomorphogenesis by differentially regulated, interacting signalling pathways in higher plants. Annu Rev Plant Biol 53: 329–355

    Article  PubMed  CAS  Google Scholar 

  • Ni M, Tepperman JM, Quail PH (1998) PIF3, a phytochrome interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 9: 657–667

    Article  Google Scholar 

  • Ni M, Tepperman JM, Quail PH (1999) Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light. Nature 400: 781–784

    Article  PubMed  CAS  Google Scholar 

  • Osterlund MT, Hardtke CS, Wie N, Deng XW (2000) Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405: 462–466

    Article  PubMed  CAS  Google Scholar 

  • Oyama T, Shimura Y, Okada K (1997) The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev 11 2983–2995

    PubMed  CAS  Google Scholar 

  • Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carre IA, Coupland G (1998) The late elongated hypocotyl mutation of Arabidopsis thaliana disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93: 1219–1229

    Article  PubMed  CAS  Google Scholar 

  • Seo HS, Yang JY, Ishikawa M, Bolle C. Ballasteros ML, Chua NH (2003) LAF1 ubiquination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature 424: 995–999

    Article  CAS  Google Scholar 

  • Sweere U, Eichenberg K, Lohrmann J, Mira-Rodado V, Baurle I, Kudla J, Nagy F, Schäfer E, Harter K (2001) Interaction of the response regulator ARR4 with phytochrome B in modulating red light signalling. Science 942: 1108–1111

    Article  Google Scholar 

  • Tepperman JM, Zhu T, Chang HS, Wang X, Quail PH (2001) Multiple transcription-factor genes are early targets of phytochrome A signalling. Proc Natl Acad Sci USA 98: 9437–9442

    Article  PubMed  CAS  Google Scholar 

  • Wang ZY, Tobin EM (1998) Constitutive expression of the circadian clock associated 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93: 1207–1217

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi R, Nakamura M, Mochizuki N, Kay SA, Nagatani A (1999) Light-dependent translocation of a phytochrome B: GFP fusion protein to the nucleus in transgenic Arabidopsis. J Cell Biol 145 437–445

    Article  PubMed  CAS  Google Scholar 

  • Yanovsky MJ, Luppi JP, Kirchenbauer D, Ogorodnikova OB, Sineshchekov VA, Adam E, Kircher S, Staneloni RJ, Schäfer E, Nagy F, Casal JJ (2002) Missense mutation in the PAS2 domain of phytochrome A impairs subnuclear localisation and a subset of responses. Plant Cell 14: 1591–1603

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Yamada Science Foundation and Springer-Verlag Tokyo

About this chapter

Cite this chapter

Nagy, F., Schäfer, E. (2005). Phytochrome and COP1 Regulates Abundance of Phytochrome Interacting Factor 3. In: Wada, M., Shimazaki, Ki., Iino, M. (eds) Light Sensing in Plants. Springer, Tokyo. https://doi.org/10.1007/4-431-27092-2_30

Download citation

Publish with us

Policies and ethics