Skip to main content

Evolutionary Selection of Phytochrome Chromophores

  • Chapter
Light Sensing in Plants
  • 1289 Accesses

Abstract

Phytochromes in plants are dimeric proteins that have a single linear tetrapyr- role molecule, phytochromobilin (PΦB), as chromophore in each protein mole- cule. Chromophore attachment to photoreceptor is essential for light perception. Although different types of phytochromes are encoded by a small multigene family in plants, the structure of chromophore molecules is common for all phy- tochromes. In prokaryotes, phytochrome-like proteins named bacteriophy- tochromes (Bphs), which have a different prosthetic group, biliverdin (BV)or phycocyanobilin (PCB), were discovered in the 1990s ([Hughes and Lamparter 1999], [Montgomery and Lagarias 2002]). The genes and proteins for tetrapyrrole metabolism have been identified in plants by a molecular genetic approach with Arabidopsis photomorphogenic mutants ([Muramoto et al 1999], [Kohchi et al 2001])and in algae by a comparative genomics ([Frankenberg et al 2001]). Using mutants and biosynthetic genes of phytochrome chromophores as tools, a genetic system was developed allowing a structure-function assay of phytochrome chro- mophores in photochromic and physiological responses in plants ([Kami et al 2004]). Here we present a mini-review of phytochrome chromophore biosynthe- sis and structure from an evolutionary point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bhoo SH, Davis SJ, Walker J, Karniol B, Vierstra RD (2001) Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore. Nature 414: 776–779

    Article  PubMed  CAS  Google Scholar 

  • Davis SJ, Kurepa J, Vierstra RD (1999) The Arabidopsis thaliana HY1 locus, required for phytochrome-chromophore biosynthesis, encodes a protein related to heme oxygenases. Proc Natl Acad Sci USA 96: 6541–6546

    Article  PubMed  CAS  Google Scholar 

  • Frankenberg N, Mukougawa K, Kohchi T, Lagarias JC (2001) Functional genomic analysis of the HY2 family of ferredoxin-dependent bilin reductases from oxygenic photosynthetic organisms. Plant Cell 13: 965–978

    Article  PubMed  CAS  Google Scholar 

  • Frankenberg N, Lagarias JC (2003) Phycocyanobilin: ferredoxin oxidoreductase of Anabaena sp. PCC 7120. Biochemical and spectroscopic characterization. J Biol Chem 278: 9219–9226

    Google Scholar 

  • Hanzawa H, Inomata K, Kinoshita H, Kakiuchi T, Jayasundera KP, Sawamoto D, Ohta A, Uchida K, Wada K, Furuya M (2001) In vitro assembly of phytochrome B apoprotein with synthetic analogs of the phytochrome chromophore. Proc Natl Acad Sci USA 98: 3612–3617

    Article  PubMed  CAS  Google Scholar 

  • Hanzawa H, Shinomura T, Inomata K, Kakiuchi T, Kinoshita H, Wada K, Furuya M (2002) Structural requirement of bilin chromophore for the photosensory specificity of phytochrome A and B. Proc Natl Acad Sci USA 99: 4725–4729

    Article  PubMed  CAS  Google Scholar 

  • Hübschmann T, Börner T, Hartmann E, Lamparter T (2001) Characterization of the Cph1 holo-phytochrome from Synechocystis sp. PCC 6803. Eur J Biochem 268: 2055–2063

    Article  PubMed  Google Scholar 

  • Hughes J, Lamparter T (1999) Prokaryotes and phytochromes. The connection to chromophore and signaling. Plant Physiol 121: 1059–1068

    Article  PubMed  CAS  Google Scholar 

  • Kami C, Mukougawa K, Muramoto T, Yokota A, Shinomura T, Lagarias JC, Kohchi T (2004) Functional complementation of phytochrome chromophore-deficient Arabidopsis plants by expression of phycocyanobilin: Ferredoxin oxidoreductase. Proc Natl Acad Sci USA 101: 1099–1104

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3: 109–136

    Article  PubMed  CAS  Google Scholar 

  • Kohchi T, Mukougawa K, Masuda M, Yokota A, Frankenberg N, Lagarias JC (2001) The Arabidopsis HY2 gene encodes phytochromobilin synthase, a ferredoxin-dependent biliverdin reductase. Plant Cell 13: 425–436

    Article  PubMed  CAS  Google Scholar 

  • Montgomery BL, Lagarias JC (2002) Phytochrome ancestry: sensors of bilins and light. Trends Plant Sci 7: 357–66

    Article  PubMed  CAS  Google Scholar 

  • Muramoto T, Kohchi T, Yokota A, Hwang I, Goodman HM (1999) The Arabidopsis photomorphogenic mutant hy1 is deficient in phytochrome chromophore biosynthesis as a result of a mutation in a plastid heme oxygenase. Plant Cell 11: 335–348

    Article  PubMed  CAS  Google Scholar 

  • Muramoto T, Tsurui N, Terry MJ, Yokota A, Kohchi T (2002) Expression and biochemical properties of a ferredoxin-dependent heme oxygenase required for phytochrome chromophore synthesis. Plant Physiol 130: 1958–1966

    Article  PubMed  CAS  Google Scholar 

  • Quail PH (2002) Phytochrome photosensory signaling networks. Nat Rev Mol Cell Biol 3: 85–93

    Article  PubMed  CAS  Google Scholar 

  • Quest B, Gärtner W (2004) Chromophore selectivity in bacterial phytochromes. Dissecting the process of chromophore attachment. Eur J Biochem 271: 1117–1126

    Article  PubMed  CAS  Google Scholar 

  • Rüdiger W, Thümmler F (1992) The phytochrome chromophore. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in plants. Kluwer Academic, Dordrecht

    Google Scholar 

  • Terry MJ, Linley PJ, Kohchi T (2002) Making light of it: the role of plant haem oxygenase in phytochrome chromophore synthesis. Biochem Soc Trans 30: 604–609

    Article  PubMed  Google Scholar 

  • Yeh KC, Wu SH, Murphy JT, Lagarias JC (1997) A cyanobacterial phytochrome two-component light sensory system. Science 277: 1505–1508

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Yamada Science Foundation and Springer-Verlag Tokyo

About this chapter

Cite this chapter

Kohchi, T. (2005). Evolutionary Selection of Phytochrome Chromophores. In: Wada, M., Shimazaki, Ki., Iino, M. (eds) Light Sensing in Plants. Springer, Tokyo. https://doi.org/10.1007/4-431-27092-2_3

Download citation

Publish with us

Policies and ethics