Skip to main content

History and Insights

  • Chapter
Light Sensing in Plants
  • 1337 Accesses

Abstract

Human beings have always relied on plants to provide their staple foods and raw materials for diverse tools, and since prehistoric times must have known that sunlight greatly influences plant development and reproduction. From the Renaissance onwards, careful observations of nature led to a growing awareness that both higher and lower plants respond variously to light in terms of irradiation dosage for photosynthesis, direction for phototropism, timing and duration for photoperiodism, and wavelengths for photomorphogenesis. [Joseph Priestley (1772)] discovered that green plants utilize light as their source of energy for the production of complex organic substances. Julius Sachs (1864) demonstrated that only the blue region of visible light resulted in phototropic bending of plants. [Charles Darwin and his son (1881)] carried out a pioneering experiment on lightsignal transduction of phototropism, in which they separated the photoreceptive site from the responding growth region in monocot seedlings. In 1910, Georg Klebs gathered a lot of evidence that the environmental light greatly influences growth and development of seed plants and ferns. However, the molecular basis of light perception and signal transduction in plants was not elucidated until quite recently.

Retired, the University of Tokyo in 1987, Riken Frontier Research Program in 1992, and Hitachi Advanced Research Laboratory in 2001 (see Furuya 2004)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad M, Cashmore AR (1993) HY4 gene of A. thaliana encodes a protein with characteristic of a blue-light photoreceptor. Nature 366: 162–166

    Article  PubMed  CAS  Google Scholar 

  • Baum G, Long JC, Jenkins GI, Trewavas AJ (1999) Stimulation of the blue light phototropic receptor NPH1 causes a transient increase in cytosolic Ca2+. Proc Natl Acad Sci USA 96: 13554–13559

    Article  PubMed  CAS  Google Scholar 

  • Blaauw OH, Blaauw-Jensen G, Van Leeuwen WJ (1968) An irreversible red-light-induced growth response in Avena. Planta 82: 87–104

    Article  Google Scholar 

  • Bolle C, Koncz C, Chua NH (2000) PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction. Genes Dev 14: 1269–1278

    PubMed  CAS  Google Scholar 

  • Borthwick HA, Hendricks SB (1960) Photoperiodism in plants. Science 132: 1223–1228

    Article  PubMed  Google Scholar 

  • Borthwick HA, Hendricks SB, Parker MW, Toole EH, Toole VK (1952) A reversible photoreaction controlling seed germination. Proc Natl Acad Sci USA 38: 662–666

    Article  PubMed  CAS  Google Scholar 

  • Briggs WR, Rice HV (1972) Phytochrome: Chemical and physical properties and mechanism of action. Annu Rev Plant Physiol 23: 293–334

    Article  CAS  Google Scholar 

  • Butler WL, Norris KH, Siegelman HW, Hendricks SB (1959) Detection, assay, and preliminary purification of the pigment controlling photoresponsive development of plants. Proc Natl Acad Sci USA 45: 1703–1708

    Article  PubMed  CAS  Google Scholar 

  • Butler WL, Lane HC, Siegelman HW (1963) Nonphotochemical transformations of phytochrome in vivo. Plant Physiol 38: 514–519

    PubMed  CAS  Google Scholar 

  • Chory J, Peto C, Feinbaum R, Pratt LH, Ausubel F (1989) Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell 58: 991–999

    Article  PubMed  CAS  Google Scholar 

  • Darwin C, Darwin F (1881) The power of movement in plants. Appleton, London

    Google Scholar 

  • De Greef J (ed) (1980) Photoreceptors and plant development. Antwerpen University Press

    Google Scholar 

  • Devlin PF, Kay SA (2000) Cryptochromes are required for phytochrome signaling to the circadian clock but not for rhythmicity. Plant Cell 12: 2499–2510

    Article  PubMed  CAS  Google Scholar 

  • Folta KM, Spalding E (2001) Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolution analysis of blue light-mediated hypocotyl growth inhibition. Plant J 26: 471–478

    Article  PubMed  CAS  Google Scholar 

  • Furuya M (1968) Biochemistry and physiology of phytochrome. Progr Phytochem 1: 347–405

    CAS  Google Scholar 

  • Furuya M (ed) (1987) Phytochrome and photoregulation in plants. Academic, Tokyo

    Google Scholar 

  • Furuya M (1993) Phytochromes: their molecular species, gene families, and functions. Annu Rev Plant Physiol Plant Mol Biol 44: 617–645

    Article  CAS  Google Scholar 

  • Furuya M (2004) An unforeseen voyage to the world of phytochromes. Annu Rev Plant Biol 55: 1–21

    Article  PubMed  CAS  Google Scholar 

  • Furuya M, Schäfer E (1996) Photoperception and signalling of induction reactions by different phytochromes. Trends Plant Sci 1: 301–307

    Google Scholar 

  • Furuya M, Hopkins WG, Hillman WS (1965) Effects of metal-complexing and sulfhydryl compounds on nonphotochemical phytochrome changes in vivo. Arch Biochem Biophys 112: 180–186

    Article  PubMed  CAS  Google Scholar 

  • Garner WW, Allard HA (1920) Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J Agric Res 18: 553–606

    Google Scholar 

  • Guo H, Yang H, Mockler TC, Lin C (1998) Regulation of flowering time by Arabidopsis photoreceptors. Science 279: 1360–1363

    Article  PubMed  CAS  Google Scholar 

  • Hamner KC, Bonner J (1938) Photoperiodism in relation to hormones as factors in floral initiation and development. Bot Gaz 100: 388–431

    Article  CAS  Google Scholar 

  • Hanzawa H, Inomata K, Kinoshita H, Kakiuchi T, Jayasundera KP, Sawamoto D, Ohta A, Uchida K, Wada K, Furuya M (2001) In vitro assembly of phytochrome B apoprotein with synthetic analogs of the phytochrome chromophore. Proc Natl Acad Sci USA 98: 3612–3617

    Article  PubMed  CAS  Google Scholar 

  • Hanzawa H, Shinomura T, Inomata K, Kakiuchi T, Kinoshita H, Wada K, Furuya M (2002) Structural requirement of bilin chromophore for the photosensory specificity of phytochromes A and B. Proc Natl Acad Sci USA 99: 4725–4729

    Article  PubMed  CAS  Google Scholar 

  • Harada A, Sakai T, Okada K (2003) phot1 and phot2 mediate blue light-induced transient increase in cytosolic Ca2+ differently in Arabidopsis leaves. Proc Natl Acad Sci USA 100: 8583–8588

    Article  PubMed  CAS  Google Scholar 

  • Hartmann KM (1966) A general hypothesis to interpret ‘high energy phenomena’ of photomorphogenesis on the basis of phytochrome. Photochem Photobiol 5: 349–366

    CAS  Google Scholar 

  • Haupt W (1970) Ãœber den Dichroismus von Phytochrom-660 und Phytochrom-730 bei Mougeotia. Z Pflanzenphysiol 62: 287–298

    CAS  Google Scholar 

  • Hillman WS (1967) The physiology of phytochrome. Annu Rev Plant Physiol 18: 301–324

    Article  CAS  Google Scholar 

  • Hisada A, Hanzawa H, Weller JL, Nagatani A, Reid JB, Furuya M (2000) Light-induced nuclear translocation of endogenous pea phytochrome A visualized by immunocytochemical procedure. Plant Cell 12: 1063–1078

    Article  PubMed  CAS  Google Scholar 

  • Hisada A, Yoshida T, Kubata S, Nishizawa NK, Furuya M (2001) Technical advance: An automated device for cryofixation of specimens of electron microscopy using liquid helium. Plant Cell Physiol 42: 885–893

    Article  PubMed  CAS  Google Scholar 

  • Huala E, Oeller PW, Liscum E, Han IS, Larsen E, Briggs WR (1997) Arabidopsis NPH1: A protein kinase with a putative redox-sensing domain. Science 278: 2120–2123

    Article  PubMed  CAS  Google Scholar 

  • Hudson ME (2000) The genetics of phytochrome signalling in Arabidopsis. Semin Cell Dev Biol 11: 475–483

    Article  PubMed  CAS  Google Scholar 

  • Im YJ, Kim JI, Shen Y, Na Y, Han YJ, Kim SH, Song PS, Eom SH (2004) Structural analysis of Arabidopsis thaliana nucleoside phosphate kinase-2 for phytochrome-mediated light signaling. J Mol Biol 343: 659–670

    Article  PubMed  CAS  Google Scholar 

  • Imaizumi T, Kadota A, Hasebe M, Wada M (2002) Cryptochrome light signals control development to suppress auxin sensitivity in the moss Physcomitrella patens. Plant Cell 14: 373–386

    Article  PubMed  CAS  Google Scholar 

  • Imaizumi T, Tran HG, Swartz TE, Briggs WR, Kay SA (2003) FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426: 302–306

    Article  PubMed  CAS  Google Scholar 

  • Jackson JA, Jenkins GI (1995) Extension-growth responses and expression of flavonoid biosynthesis genes in the Arabidopsis hy4 mutant. Planta 1997: 233–239

    Google Scholar 

  • Kagawa T, Sakai T, Suetsugu N, Oikawa K, Ishiguro S, Tabata S, Okada K, Wada M (2001) Arabidopsis NPL1: A phototropin homolog controlling the chloroplast high-light avoidance response. Science 291: 2138–2141

    Article  PubMed  CAS  Google Scholar 

  • Kagawa T, Kasahara M, Abe T, Yoshida S, Wada M (2004) Function analysis of Acphot2 using mutants deficient in blue light-induced chloroplast avoidance movement of the fern Adiantum capillus-veneris L. Plant Cell Physiol 45: 416–426

    Article  PubMed  CAS  Google Scholar 

  • Kasahara M, Kagawa T, Sato Y, Kiyosue T, Wada M (2004) Phototropins mediate blue and red light-induced chloroplast movements in Physcomitrella patens. Plant Physiol 135: 1388–1397

    Article  PubMed  CAS  Google Scholar 

  • Kawai H, Kanegae T, Christensen S, Kiyosue T, Sato Y, Imaizumi T, Kadota A, Wada M (2003) Responses of ferns to red light are mediated by an unconventional photoreceptor. Nature 421: 287–290

    Article  PubMed  CAS  Google Scholar 

  • Kendrick RE, Kronenberg GHM (eds) (1994) Photomorphogenesis in plants. Kluwer Academic, Dordrecht

    Google Scholar 

  • Khurana J, Poff KL (1989) Mutants of Arabidopsis thaliana with altered phototropism. Planta 178: 400–406

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Doi M, Suetsugu N, Kagawa T, Wada M, Shimazaki K (2001) phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414: 656–660

    Article  PubMed  CAS  Google Scholar 

  • Klebs G (1910) Alterations in the development and forms of plants as a result of environment. Proc R Soc Lond B 82: 547–558

    Google Scholar 

  • Koornneef M, Rolf E, Spruit CJP (1980) Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana (L.) Heynh. Z Pflanzenphysiol 100: 147–160

    Google Scholar 

  • Kuno N, Muramatsu T, Hamazato F, Furuya M (2000) Identification by large-scale screening of phytochrome-regulated genes in etiolated seedlings of Arabidopsis thaliana using the 047fluorescent differential display technique. Plant Physiol 122: 15–24

    Article  PubMed  CAS  Google Scholar 

  • Lagarias JC, Rapoport H (1980) Chromopeptides from phytochrome. The structure and linkage of the Pr form of the phytochrome chromophore. J Am Chem Soc 102: 4821–4828

    Article  CAS  Google Scholar 

  • Lin C, Ahmad M, Chan J, Cashmore AR (1996) CRY2: A second member of the Arabidopsis cryptochrome gene family (accession no. U43397). Plant Physiol 110: 1047

    Article  Google Scholar 

  • Lin C, Yang H, Guo H, Mockler T, Chen J, Cashmore AR (1998) Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc Natl Acad Sci USA 95: 2686–2690

    Article  PubMed  CAS  Google Scholar 

  • López-Juez E, Nagatani A, Tomizawa K, Deak M, Kern R, Kendrick RE, Furuya M (1992) The cucumber long hypocotyl mutant lacks a light-stable PHYB-like phytochrome. Plant Cell 4: 241–251

    Article  PubMed  Google Scholar 

  • Mackenzie JM Jr, Coleman RA, Briggs WR, Pratt LH (1975) Reversible redistribution of phytochrome within the cell upon conversion to its physiologically active form. Proc Natl Acad Sci USA 72: 799–803

    Article  PubMed  Google Scholar 

  • Mitrakos K, Shropshire W Jr (eds) (1972) Phytochrome. Academic, London

    Google Scholar 

  • Mohr H, Schäfer E (1983) Photoperception and de-etiolation. Philos Trans R Soc Lond B 303: 489–501

    CAS  Google Scholar 

  • Montgomery BL, Lagarias JC (2002) Phytochrome ancestry: sensors of bilins and light. Trends Plant Sci 7: 1360–1385

    Article  Google Scholar 

  • Nagy F, Schäfer E (2002) Phytochromes control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants. Annu Rev Plant Biol 53: 329–355

    Article  PubMed  CAS  Google Scholar 

  • Park CM, Bhoo SH, Song PS (2000) Inter-domain crosstalk in the phytochrome molecules. Semin Cell Dev Biol 11: 449–456

    Article  PubMed  CAS  Google Scholar 

  • Parker MW, Hendricks SB, Borthwick HA, Went FW (1949) Spectral sensitivity for leaf and stem growth of etiolated pea seedlings and their similarity to action spectra for photoperiodism. Am J Bot 36: 194–204

    Article  Google Scholar 

  • Pratt LH (1982) Phytochrome: the protein moiety. Annu Rev Plant Physiol 33: 557–582

    Article  CAS  Google Scholar 

  • Priestley J (1772) Observations on different kinds of air. Philos Trans R Soc Lond 62: 147–264

    Google Scholar 

  • Quail PH (1997) An emerging molecular map of the phytochromes. Plant Cell Environ 20: 657–665

    Article  CAS  Google Scholar 

  • Quail PH, Marmé D, Schäfer E (1973) Particle-bound phytochrome from maize and pumpkin. Nat New Biol 245: 189–191

    PubMed  CAS  Google Scholar 

  • Reed JW, Nagpal P, Poole DS, Furuya M, Chory J (1993) Mutation in the gene for red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 5: 147–157

    Article  PubMed  CAS  Google Scholar 

  • Reed JW, Nagatani A, Elich TD, Fagan M, Chory J (1994) Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development. Plant Physiol 104: 1139–1149

    PubMed  CAS  Google Scholar 

  • Rubinstein B, Drury KS, Park RB (1969) Evidence for bound phytochrome in oat seedlings. Plant Physiol 44: 105–109

    Article  PubMed  CAS  Google Scholar 

  • Rüdiger W, Thümmler F, Cmiel E, Schneider S (1983) Chromophore structure of the physiologically active form (Pfr) of phytochrome. Proc Natl Acad Sci USA 80: 6244–6248

    Article  PubMed  Google Scholar 

  • Sachs J (1864) Wirkungen farbigen Lichts auf Pflanzen. Bot Z 22: 353–358, 361–367, 369–372

    Google Scholar 

  • Sage LC (1992) Pigment of the imagination, a history of phytochrome research. Academic, San Diego

    Google Scholar 

  • Sakai T, Kagawa T, Kasahara M, Swartz TE, Christie JM, Briggs WR, Wada M, Okada K (2001) Arabidopsis nph1 and npl1: Blue-light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci USA 98: 6969–6974

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto K, Briggs WR (2002) Cellular and subcellular localization of phototropin1. Plant Cell 14: 1723–1735

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto K, Nagatani A (1996) Nuclear localization activity of phytochrome B. Plant J 10: 859–868

    Article  PubMed  CAS  Google Scholar 

  • Senger H (ed) (1980) The blue light syndrome. Springer, Berlin

    Google Scholar 

  • Sharrock RA, Quail PH (1989) Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution and differential expression of a plant regulatory photoreceptor family. Genes Dev 3: 1745–1757

    PubMed  CAS  Google Scholar 

  • Shinomura T, Nagatani A, Hanzawa H, Kubota M, Watanabe M, Furuya M (1996) Action spectra for phytochrome A-and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proc Natl Acad Sci USA 93: 8129–8133

    Article  PubMed  CAS  Google Scholar 

  • Shinomura T, Uchida K, Furuya M (2000) Elementary processes of photoperception by phytochrome A for high irradiance response of hypocotyl elongations in Arabidopsis thaliana. Plant Physiol 122: 147–156

    Article  PubMed  CAS  Google Scholar 

  • Shropshire W Jr, Mohr H (eds) (1983) Photomorphogenesis. Encyclopedia of plant physiology, New Series vol. 16. Springer, Berlin

    Google Scholar 

  • Siegelman HW, Butler WL (1965) Properties of phytochrome. Annu Rev Plant Physiol 16: 383–392

    Article  CAS  Google Scholar 

  • Smith H (ed) (1976) Light and plant development. Butterworths, London

    Google Scholar 

  • Smith H (ed) (1983) Photoperception by plants. The Royal Society, London

    Google Scholar 

  • Smith HMS, Raikhel NV (1999) Protein targeting to the nuclear pore. What can we learn from plants? Plant Physiol 119: 1157–1163

    Article  PubMed  CAS  Google Scholar 

  • Smith H, Whitelam GC (1997) The shade avoidance syndrome: multiple responses mediated by multiple phytochromes. Plant Cell Environ 20: 840–844

    Article  Google Scholar 

  • Somers DE, Devlin PF, Kay SA (1998) Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282: 1488–1490

    Article  PubMed  CAS  Google Scholar 

  • Stoelzle S, Kagawa T, Wada M, Hedirich R, Dietrich P (2003) Blue light activates calciumpermeable channels in Arabidopsis mesophyll cells via the phototropin signaling pathway. Proc Natl Acad Sci USA 100: 1456–1461

    Article  PubMed  CAS  Google Scholar 

  • Thomas B, Johnson CB (eds) (1990) Phytochrome properties and biological action. Springer, Berlin

    Google Scholar 

  • Tournois J (1914) Études sur la sexualité du Houblon. Ann Sci Nat Bot Biol Veg Ser IX, 19: 49–191

    Google Scholar 

  • Vierstra RD, Quail PH (1982) Native phytochrome: Inhibition of proteolysis yields a homogeneous monomer of 124 kilodaltons from Avena. Proc Natl Acad Sci USA 79: 5272–5276

    Article  PubMed  CAS  Google Scholar 

  • Wada M, Kadota A (1989) Photomorphogenesis in lower green plants. Annu Rev Plant Physiol Plant Mol Biol 40: 169–191

    Article  Google Scholar 

  • Wagner D, Fairchild CD, Kuhn RM, Quail PH (1996) Chromophore-bearing NH2-terminal domains of phytochromes A and B determine their photosensory specificity and differential light lability. Proc Natl Acad Sci USA 93: 4011–4015

    Article  PubMed  CAS  Google Scholar 

  • Whitelam GC, Devin PF (1997) Roles of different phytochromes in Arabidopsis photomorphogenesis. Plant Cell Environ 20: 752–758

    Article  CAS  Google Scholar 

  • Whitelam GC, Johnson E, Peng J, Carol P, Anderson ML, Cowl JS, Harberd NP (1993) Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell 5: 757–768

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Yamada Science Foundation and Springer-Verlag Tokyo

About this chapter

Cite this chapter

Furuya, M. (2005). History and Insights. In: Wada, M., Shimazaki, Ki., Iino, M. (eds) Light Sensing in Plants. Springer, Tokyo. https://doi.org/10.1007/4-431-27092-2_1

Download citation

Publish with us

Policies and ethics