Skip to main content

The Toxicity of Nanoparticles to Organisms in Freshwater

  • Chapter
  • First Online:

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 248))

Abstract

Nanotechnology is a rapidly growing industry yielding many benefits to society. However, aquatic environments are at risk as increasing amounts of nanoparticles (NPs) are contaminating waterbodies causing adverse effects on aquatic organisms. In this review, the impacts of environmental exposure to NPs, the influence of the physicochemical characteristics of NPs and the surrounding environment on toxicity and mechanisms of toxicity together with NP bioaccumulation and trophic transfer are assessed with a focus on their impacts on bacteria, algae and daphnids. We identify several gaps which need urgent attention in order to make sound decisions to protect the environment. These include uncertainty in both estimated and measured environmental concentrations of NPs for reliable risk assessment and for regulating the NP industry. In addition toxicity tests and risk assessment methodologies specific to NPs are still at the research and development stage. Also conflicting and inconsistent results on physicochemical characteristics and the fate and transport of NPs in the environment suggest the need for further research. Finally, improved understanding of the mechanisms of NP toxicity is crucial in risk assessment of NPs, since conventional toxicity tests may not reflect the risks associated with NPs. Behavioural effects may be more sensitive and would be efficient in certain situations compared with conventional toxicity tests due to low NP concentrations in field conditions. However, the development of such tests is still lacking, and further research is recommended.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abramenko NB, Demidova TB, Abkhalimov ЕV, Ershov BG, Krysanov EY, Kustov LM (2018) Ecotoxicity of different-shaped silver nanoparticles: case of zebrafish embryos. J Hazard Mater 347:89–94

    CAS  Google Scholar 

  • Adam N, Schmitt C, Galceran J, Companys E, Vakurov A, Wallace R, Knapen D, Blust R (2014) The chronic toxicity of ZnO nanoparticles and ZnCl2 to Daphnia magna and the use of different methods to assess nanoparticle aggregation and dissolution. Nanotoxicology 8:709–717

    CAS  Google Scholar 

  • Adam N, Leroux F, Knapen D, Bals S, Blust R (2015a) The uptake and elimination of ZnO and CuO nanoparticles in Daphnia magna under chronic exposure scenarios. Water Res 68:249–261

    CAS  Google Scholar 

  • Adam N, Vakurov A, Knapen D, Blust R (2015b) The chronic toxicity of CuO nanoparticles and copper salt to Daphnia magna. J Hazard Mater 283:416–422

    CAS  Google Scholar 

  • Adeleye AS, Keller AA (2016) Interactions between algal extracellular polymeric substances and commercial TiO2 nanoparticles in aqueous media. Environ Sci Technol 50:12258–12265

    CAS  Google Scholar 

  • Aiken GR, Hsu-Kim H, Ryan JN (2011) Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids. Environ Sci Technol 45:3196–3201

    CAS  Google Scholar 

  • Akhil K, Sudheer Khan S (2017) Effect of humic acid on the toxicity of bare and capped ZnO nanoparticles on bacteria, algal and crustacean systems. J Photochem Photobiol B Biol 167:136–149

    CAS  Google Scholar 

  • Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16

    CAS  Google Scholar 

  • Allen HJ, Impellitteri CA, Macke DA, Heckman JL, Poynton HC, Lazorchak JM, Govindaswamy S, Roose DL, Nadagouda MN (2010) Effects from filtration, capping agents, and presence/absence of food on the toxicity of silver nanoparticles to Daphnia magna. Environ Toxicol Chem 29:2742–2750

    Google Scholar 

  • Angel BM, Vallotton P, Apte SC (2015) On the mechanism of nanoparticulate CeO 2 toxicity to freshwater algae. Aquat Toxicol 168:90–97

    CAS  Google Scholar 

  • Apul OG, Karanfil T (2015) Adsorption of synthetic organic contaminants by carbon nanotubes: a critical review. Water Res 68:34–55

    CAS  Google Scholar 

  • Aravantinou AF, Tsarpali V, Dailianis S, Manariotis ID (2015) Effect of cultivation media on the toxicity of ZnO nanoparticles to freshwater and marine microalgae. Ecotoxicol Environ Saf 114:109–116

    CAS  Google Scholar 

  • Artells E, Issartel J, Auffan M, Borschneck D, Thill A, Tella M, Brousset L, Rose J, Bottero J-Y, Thiéry A (2013) Exposure to cerium dioxide nanoparticles differently affect swimming performance and survival in two daphnid species. PLoS One 8:e71260

    CAS  Google Scholar 

  • Aruoja V, Dubourguier H-C, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO 2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468

    CAS  Google Scholar 

  • Aruoja V, Pokhrel S, Sihtmäe M, Mortimer M, Mädler L, Kahru A (2015) Toxicity of 12 metal-based nanoparticles to algae, bacteria and protozoa. Environ Sci Nano 2:630–644

    CAS  Google Scholar 

  • Asadishad B, Chahal S, Akbari A, Cianciarelli V, Azodi M, Ghoshal S, Tufenkji N (2018) Amendment of agricultural soil with metal nanoparticles: effects on soil enzyme activity and microbial community composition. Environ Sci Technol 52:1908–1918

    CAS  Google Scholar 

  • Aschberger K, Micheletti C, Sokull-Klüttgen B, Christensen FM (2011) Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health – lessons learned from four case studies. Environ Int 37:1143–1156

    CAS  Google Scholar 

  • Astefanei A, Núñez O, Galceran MT (2014) Analysis of C60-fullerene derivatives and pristine fullerenes in environmental samples by ultrahigh performance liquid chromatography–atmospheric pressure photoionization-mass spectrometry. J Chromatogr A 1365:61–71

    CAS  Google Scholar 

  • ASTM (2012) Standard guide for conducting static toxicity tests with microalgae. ASTM International, West Conshohocken

    Google Scholar 

  • Atiyeh BS, Costagliola M, Hayek SN, Dibo SA (2007) Effect of silver on burn wound infection control and healing: review of the literature. Burns 33:139–148

    Google Scholar 

  • Auffan M, Rose J, Wiesner MR, Bottero J-Y (2009) Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ Pollut 157:1127–1133

    CAS  Google Scholar 

  • Aznar R, Barahona F, Geiss O, Ponti J, José Luis T, Barrero-Moreno J (2017) Quantification and size characterisation of silver nanoparticles in environmental aqueous samples and consumer products by single particle-ICPMS. Talanta 175:200–208

    CAS  Google Scholar 

  • Baalousha M, Lead J (2013) Characterization of natural and manufactured nanoparticles by atomic force microscopy: effect of analysis mode, environment and sample preparation. Colloids Surf A Physicochem Eng Asp 419:238–247

    CAS  Google Scholar 

  • Bacchetta R, Maran B, Marelli M, Santo N, Tremolada P (2016) Role of soluble zinc in ZnO nanoparticle cytotoxicity in Daphnia magna: a morphological approach. Environ Res 148:376–385

    CAS  Google Scholar 

  • Bacchetta R, Santo N, Valenti I, Maggioni D, Longhi M, Tremolada P (2018) Comparative toxicity of three differently shaped carbon nanomaterials on Daphnia magna: does a shape effect exist? Nanotoxicology 12:201–223

    CAS  Google Scholar 

  • Badawy AME, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44:1260–1266

    Google Scholar 

  • Baek Y-W, An Y-J (2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ 409:1603–1608

    CAS  Google Scholar 

  • Baker TJ, Tyler CR, Galloway TS (2014) Impacts of metal and metal oxide nanoparticles on marine organisms. Environ Pollut 186:257–271

    CAS  Google Scholar 

  • Barbero CA, Yslas EI (2016) Ecotoxicity effects of nanomaterials on aquatic organisms: nanotoxicology of materials. Appl Nanotechnol Environ Sustain:330

    Google Scholar 

  • Batley G, Mclaughlin MJ (2007) Fate of manufactured nanomaterials in the Australian environment. CSIRO Land and Water, Acton

    Google Scholar 

  • Bäuerlein PS, Emke E, Tromp P, Hofman JAMH, Carboni A, Schooneman F, de Voogt P, van Wezel AP (2017) Is there evidence for man-made nanoparticles in the Dutch environment? Sci Total Environ 576:273–283

    Google Scholar 

  • Baumann J, Köser J, Arndt D, Filser J (2014) The coating makes the difference: acute effects of iron oxide nanoparticles on Daphnia magna. Sci Total Environ 484:176–184

    CAS  Google Scholar 

  • Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17:387–395

    CAS  Google Scholar 

  • Becaro AA, Jonsson CM, Puti FC, Siqueira MC, Mattoso LH, Correa DS, Ferreira MD (2015) Toxicity of PVA-stabilized silver nanoparticles to algae and microcrustaceans. Environ Nanotechnol Monit Manag 3:22–29

    Google Scholar 

  • Behra R, Sigg L, Clift MJ, Herzog F, Minghetti M, Johnston B, Petri-Fink A, Rothen-Rutishauser B (2013) Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective. J R Soc Interface 10:20130396

    Google Scholar 

  • Bhushan B (2010) Springer handbook of nanotechnology. Springer, Berlin

    Google Scholar 

  • Bhuvaneshwari M, Iswarya V, Archanaa S, Madhu GM, Kumar GKS, Nagarajan R, Chandrasekaran N, Mukherjee A (2015) Cytotoxicity of ZnO NPs towards fresh water algae Scenedesmus obliquus at low exposure concentrations in UV-C, visible and dark conditions. Aquat Toxicol 162:29–38

    CAS  Google Scholar 

  • Bhuvaneshwari M, Iswarya V, Nagarajan R, Chandrasekaran N, Mukherjee A (2016) Acute toxicity and accumulation of ZnO NPs in Ceriodaphnia dubia: relative contributions of dissolved ions and particles. Aquat Toxicol 177:494–502

    CAS  Google Scholar 

  • Bhuvaneshwari M, Kumar D, Roy R, Chakraborty S, Parashar A, Mukherjee A, Chandrasekaran N, Mukherjee A (2017) Toxicity, accumulation, and trophic transfer of chemically and biologically synthesized nano zero valent iron in a two species freshwater food chain. Aquat Toxicol 183:63–75

    CAS  Google Scholar 

  • Bhuvaneshwari M, Iswarya V, Vishnu S, Chandrasekaran N, Mukherjee A (2018a) Dietary transfer of zinc oxide particles from algae (Scenedesmus obliquus) to Daphnia (Ceriodaphnia dubia). Environ Res 164:395–404

    CAS  Google Scholar 

  • Bhuvaneshwari M, Thiagarajan V, Nemade P, Chandrasekaran N, Mukherjee A (2018b) Toxicity and trophic transfer of P25 TiO2 NPs from Dunaliella salina to Artemia salina: effect of dietary and waterborne exposure. Environ Res 160:39–46

    CAS  Google Scholar 

  • Bianchini A, Wood CM (2003) Mechanism of acute silver toxicity in Daphnia magna. Environ Toxicol Chem 22:1361–1367

    CAS  Google Scholar 

  • Bianchini A, Wood CM (2008) Does sulfide or water hardness protect against chronic silver toxicity in Daphnia magna? A critical assessment of the acute-to-chronic toxicity ratio for silver. Ecotoxicol Environ Saf 71:32–40

    CAS  Google Scholar 

  • Bianchini A, Bowles KC, Brauner CJ, Gorsuch JW, Kramer JR, Wood CM (2002) Evaluation of the effect of reactive sulfide on the acute toxicity of silver (I) to Daphnia magna. Part 2: toxicity results. Environ Toxicol Chem 21:1294–1300

    CAS  Google Scholar 

  • Binaeian E, Rashidi A, Attar H (2012) Toxicity study of two different synthesized silver nanoparticles on bacteria Vibrio fischeri. WASET 67:1219–1225

    Google Scholar 

  • Blaser SA, Scheringer M, Macleod M, Hungerbühler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409

    CAS  Google Scholar 

  • Blinova I, Ivask A, Heinlaan M, Mortimer M, Kahru A (2010) Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ Pollut 158:41–47

    CAS  Google Scholar 

  • Blinova I, Niskanen J, Kajankari P, Kanarbik L, Käkinen A, Tenhu H, Penttinen O-P, Kahru A (2013) Toxicity of two types of silver nanoparticles to aquatic crustaceans Daphnia magna and Thamnocephalus platyurus. Environ Sci Pollut Res 20:3456–3463

    CAS  Google Scholar 

  • Blinova I, Kanarbik L, Irha N, Kahru A (2017) Ecotoxicity of nanosized magnetite to crustacean Daphnia magna and duckweed Lemna minor. Hydrobiologia 798:141–149

    CAS  Google Scholar 

  • Boncel S, Kyzioł-Komosińska J, Krzyżewska I, Czupioł J (2015) Interactions of carbon nanotubes with aqueous/aquatic media containing organic/inorganic contaminants and selected organisms of aquatic ecosystems – a review. Chemosphere 136:211–221

    CAS  Google Scholar 

  • Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87:1181–1200

    CAS  Google Scholar 

  • Bone AJ, Colman BP, Gondikas AP, Newton KM, Harrold KH, Cory RM, Unrine JM, Klaine SJ, Matson CW, Di Giulio RT (2012) Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles: part 2–toxicity and Ag speciation. Environ Sci Technol 46:6925–6933

    CAS  Google Scholar 

  • Botha TL, Boodhia K, Wepener V (2016) Adsorption, uptake and distribution of gold nanoparticles in Daphnia magna following long term exposure. Aquat Toxicol 170:104–111

    CAS  Google Scholar 

  • Bouldin JL, Ingle TM, Sengupta A, Alexander R, Hannigan RE, Buchanan RA (2008) Aqueous toxicity and food chain transfer of quantum dots™ in freshwater algae and Ceriodaphnia dubia. Environ Toxicol Chem 27:1958–1963

    CAS  Google Scholar 

  • Bour A, Mouchet F, Silvestre J, Gauthier L, Pinelli E (2015) Environmentally relevant approaches to assess nanoparticles ecotoxicity: a review. J Hazard Mater 283:764–777

    CAS  Google Scholar 

  • Boxall AB, Chaudhry Q, Sinclair C, Jones A, Aitken R, Jefferson B, Watts C (2007) Current and future predicted environmental exposure to engineered nanoparticles. Central Science Laboratory, Department of the Environment and Rural Affairs, London, p 89

    Google Scholar 

  • Bozich JS, Lohse SE, Torelli MD, Murphy CJ, Hamers RJ, Klaper RD (2014) Surface chemistry, charge and ligand type impact the toxicity of gold nanoparticles to Daphnia magna. Environ Sci Nano 1:260–270

    CAS  Google Scholar 

  • Bradford A, Handy RD, Readman JW, Atfield A, Mühling M (2009) Impact of silver nanoparticle contamination on the genetic diversity of natural bacterial assemblages in estuarine sediments. Environ Sci Technol 43:4530–4536

    CAS  Google Scholar 

  • Brant J, Lecoanet H, Wiesner MR (2005) Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J Nanopart Res 7:545–553

    CAS  Google Scholar 

  • Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870

    CAS  Google Scholar 

  • Brown DM, Wilson MR, Macnee W, Stone V, Donaldson K (2001) Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175:191–199

    CAS  Google Scholar 

  • Brun NR, Beenakker MMT, Hunting ER, Ebert D, Vijver MG (2017) Brood pouch-mediated polystyrene nanoparticle uptake during Daphnia magna embryogenesis. Nanotoxicology 11:1059–1069

    CAS  Google Scholar 

  • Buffet P-E, Pan J-F, Poirier L, Amiard-Triquet C, Amiard J-C, Gaudin P, Risso-De Faverney C, Guibbolini M, Gilliland D, Valsami-Jones E (2013) Biochemical and behavioural responses of the endobenthic bivalve Scrobicularia plana to silver nanoparticles in seawater and microalgal food. Ecotoxicol Environ Saf 89:117–124

    CAS  Google Scholar 

  • Bundschuh M, Seitz F, Rosenfeldt RR, Schulz R (2016) Effects of nanoparticles in fresh waters: risks, mechanisms and interactions. Freshw Biol 61:2185–2196

    Google Scholar 

  • Bundschuh M, Filser J, Lüderwald S, Mckee MS, Metreveli G, Schaumann GE, Schulz R, Wagner S (2018) Nanoparticles in the environment: where do we come from, where do we go to? Environ Sci Eur 30:6

    Google Scholar 

  • Burns CW (1968) The relationship between body size of filter-feeding cladocera and the maximum size of particle ingested. Limnol Oceanogr 13:675–678

    Google Scholar 

  • Cano AM, Maul JD, Saed M, Irin F, Shah SA, Green MJ, French AD, Klein DM, Crago J, Cañas-Carrell JE (2018) Trophic transfer and accumulation of multiwalled carbon nanotubes in the presence of copper ions in Daphnia magna and Fathead minnow (Pimephales promelas). Environ Sci Technol 52:794–800

    CAS  Google Scholar 

  • Cartlidge R, Nugegoda D, Wlodkowic D (2017) Millifluidic Lab-on-a-Chip technology for automated toxicity tests using the marine amphipod Allorchestes compressa. Sensors Actuators B Chem 239:660–670

    CAS  Google Scholar 

  • Cattaneo AG, Gornati R, Chiriva-Internati M, Bernardini G (2009) Ecotoxicology of nanomaterials: the role of invertebrate testing. Invertebr Surviv J 6:78–97

    Google Scholar 

  • Cecchin I, Reddy KR, Thomé A, Tessaro EF, Schnaid F (2016) Nanobioremediation: integration of nanoparticles and bioremediation for sustainable remediation of chlorinated organic contaminants in soils. Int Biodeter Biodegr 119:419–428

    Google Scholar 

  • Chae Y, An Y-J (2016) Toxicity and transfer of polyvinylpyrrolidone-coated silver nanowires in an aquatic food chain consisting of algae, water fleas, and zebrafish. Aquat Toxicol 173:94–104

    CAS  Google Scholar 

  • Chang Y-J, Shih Y-H, Su C-H, Ho H-C (2017) Comparison of three analytical methods to measure the size of silver nanoparticles in real environmental water and wastewater samples. J Hazard Mater 322:95–104

    CAS  Google Scholar 

  • Chauhan VP, Popović Z, Chen O, Cui J, Fukumura D, Bawendi MG, Jain RK (2011) Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew Chem Int Ed 50:11417–11420

    CAS  Google Scholar 

  • Chen H-C, Ding W-H (2012) Determination of aqueous fullerene aggregates in water by ultrasound-assisted dispersive liquid–liquid microextraction with liquid chromatography–atmospheric pressure photoionization-tandem mass spectrometry. J Chromatogr A 1223:15–23

    CAS  Google Scholar 

  • Chen S, Goode AE, Sweeney S, Theodorou IG, Thorley AJ, Ruenraroengsak P, Chang Y, Gow A, Schwander S, Skepper J (2013) Sulfidation of silver nanowires inside human alveolar epithelial cells: a potential detoxification mechanism. Nanoscale 5:9839–9847

    CAS  Google Scholar 

  • Chen Q, Hu X, Yin D, Wang R (2016) Effect of subcellular distribution on nC 60 uptake and transfer efficiency from Scenedesmus obliquus to Daphnia magna. Ecotoxicol Environ Saf 128:213–221

    CAS  Google Scholar 

  • Cheng X, Kan AT, Tomson MB (2004) Naphthalene adsorption and desorption from aqueous C60 fullerene. J Chem Eng Data 49:675–683

    CAS  Google Scholar 

  • Chinnapongse SL, Maccuspie RI, Hackley VA (2011) Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters. Sci Total Environ 409:2443–2450

    CAS  Google Scholar 

  • Chithrani BD, Ghazani AA, Chan WC (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668

    CAS  Google Scholar 

  • Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588

    CAS  Google Scholar 

  • Choi O, Deng KK, Kim N-J, Ross L, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074

    CAS  Google Scholar 

  • Choi O, Yu C-P, Fernández GE, Hu Z (2010) Interactions of nanosilver with Escherichia coli cells in planktonic and biofilm cultures. Water Res 44:6095–6103

    CAS  Google Scholar 

  • Clément L, Hurel C, Marmier N (2013) Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants – effects of size and crystalline structure. Chemosphere 90:1083–1090

    Google Scholar 

  • Colman BP, Wang S-Y, Auffan M, Wiesner MR, Bernhardt ES (2012) Antimicrobial effects of commercial silver nanoparticles are attenuated in natural streamwater and sediment. Ecotoxicology 21:1867–1877

    CAS  Google Scholar 

  • Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170

    CAS  Google Scholar 

  • Conine AL, Frost PC (2017) Variable toxicity of silver nanoparticles to Daphnia magna: effects of algal particles and animal nutrition. Ecotoxicology 26:118–126

    CAS  Google Scholar 

  • Conway JR, Adeleye AS, Gardea-Torresdey J, Keller AA (2015) Aggregation, dissolution, and transformation of copper nanoparticles in natural waters. Environ Sci Technol 49:2749–2756

    CAS  Google Scholar 

  • CPI (2018) Consumer products inventory [Online]. http://www.nanotechproject.org/cpi/. Accessed 11 Mar 2018

  • Cui R, Chae Y, An Y-J (2017) Dimension-dependent toxicity of silver nanomaterials on the cladocerans Daphnia magna and Daphnia galeata. Chemosphere 185:205–212

    CAS  Google Scholar 

  • Cumberland SA, Lead JR (2009) Particle size distributions of silver nanoparticles at environmentally relevant conditions. J Chromatogr A 1216:9099–9105

    CAS  Google Scholar 

  • Cupi D, Hartmann NB, Baun A (2016a) Influence of pH and media composition on suspension stability of silver, zinc oxide, and titanium dioxide nanoparticles and immobilization of Daphnia magna under guideline testing conditions. Ecotoxicol Environ Saf 127:144–152

    CAS  Google Scholar 

  • Cupi D, Sørensen SN, Skjolding LM, Baun A (2016b) Toxicity of engineered nanoparticles to aquatic invertebrates. Engl Nanopart Environ Biophys Processes Toxicity 4

    Google Scholar 

  • Dabrunz A, Duester L, Prasse C, Seitz F, Rosenfeldt R, Schilde C, Schaumann GE, Schulz R (2011) Biological surface coating and molting inhibition as mechanisms of TiO2 nanoparticle toxicity in Daphnia magna. PLoS One 6:e20112

    CAS  Google Scholar 

  • Dai L, Banta GT, Selck H, Forbes VE (2015) Influence of copper oxide nanoparticle form and shape on toxicity and bioaccumulation in the deposit feeder, Capitella teleta. Mar Environ Res 111:99–106

    CAS  Google Scholar 

  • Daima HK, Selvakannan P, Kandjani AE, Shukla R, Bhargava SK, Bansal V (2014) Synergistic influence of polyoxometalate surface corona towards enhancing the antibacterial performance of tyrosine-capped Ag nanoparticles. Nanoscale 6:758–765

    CAS  Google Scholar 

  • Das P, Xenopoulos MA, Metcalfe CD (2013) Toxicity of silver and titanium dioxide nanoparticle suspensions to the aquatic invertebrate, Daphnia magna. Bull Environ Contam Toxicol 91:76–82

    CAS  Google Scholar 

  • Dauda S, Chia MA, Bako SP (2017) Toxicity of titanium dioxide nanoparticles to Chlorella vulgaris Beyerinck (Beijerinck) 1890 (Trebouxiophyceae, Chlorophyta) under changing nitrogen conditions. Aquat Toxicol 187:108–114

    CAS  Google Scholar 

  • Daughton CG (2004) Non-regulated water contaminants: emerging research. Environ Impact Assess Rev 24:711–732

    Google Scholar 

  • Dekkers S, Oomen AG, Bleeker EAJ, Vandebriel RJ, Micheletti C, Cabellos J, Janer G, Fuentes N, Vázquez-Campos S, Borges T, Silva MJ, Prina-Mello A, Movia D, Nesslany F, Ribeiro AR, Leite PE, Groenewold M, Cassee FR, Sips AJAM, Dijkzeul A, van Teunenbroek T, Wijnhoven SWP (2016) Towards a nanospecific approach for risk assessment. Regul Toxicol Pharmacol 80:46–59

    Google Scholar 

  • Delay M, Dolt T, Woellhaf A, Sembritzki R, Frimmel FH (2011) Interactions and stability of silver nanoparticles in the aqueous phase: influence of natural organic matter (NOM) and ionic strength. J Chromatogr A 1218:4206–4212

    CAS  Google Scholar 

  • Deng R, Lin D, Zhu L, Majumdar S, White JC, Gardea-Torresdey JL, Xing B (2017) Nanoparticle interactions with co-existing contaminants: joint toxicity, bioaccumulation and risk. Nanotoxicology 11:591–612

    CAS  Google Scholar 

  • Diegoli S, Manciulea AL, Begum S, Jones IP, Lead JR, Preece JA (2008) Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules. Sci Total Environ 402:51–61

    CAS  Google Scholar 

  • Djurišić AB, Leung YH, Ng A, Xu XY, Lee PK, Degger N (2015) Toxicity of metal oxide nanoparticles: mechanisms, characterization, and avoiding experimental artefacts. Small 11:26–44

    Google Scholar 

  • Domercq P, Praetorius A, Boxall AB (2018) Emission and fate modelling framework for engineered nanoparticles in urban aquatic systems at high spatial and temporal resolution. Environ Sci Nano 5:533–543

    CAS  Google Scholar 

  • Dominguez GA, Lohse SE, Torelli MD, Murphy CJ, Hamers RJ, Orr G, Klaper RD (2015) Effects of charge and surface ligand properties of nanoparticles on oxidative stress and gene expression within the gut of Daphnia magna. Aquat Toxicol 162:1–9

    CAS  Google Scholar 

  • Dorobantu LS, Fallone C, Noble AJ, Veinot J, Ma G, Goss GG, Burrell RE (2015) Toxicity of silver nanoparticles against bacteria, yeast, and algae. J Nanopart Res 17:172

    Google Scholar 

  • Dowling AP (2004) Development of nanotechnologies. Mater Today 7:30–35

    Google Scholar 

  • Durán N, Marcato PD, Conti RD, Alves OL, Costa F, Brocchi M (2010) Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc 21:949–959

    Google Scholar 

  • El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2010) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287

    Google Scholar 

  • El Hadri H, Louie SM, Hackley VA (2018) Assessing the interactions of metal nanoparticles in soil and sediment matrices – a quantitative analytical multi-technique approach. Environ Sci Nano 5:203–214

    CAS  Google Scholar 

  • Ellis L-JA, Valsami-Jones E, Lead JR, Baalousha M (2016) Impact of surface coating and environmental conditions on the fate and transport of silver nanoparticles in the aquatic environment. Sci Total Environ 568:95–106

    CAS  Google Scholar 

  • Ellis L-JA, Baalousha M, Valsami-Jones E, Lead JR (2018) Seasonal variability of natural water chemistry affects the fate and behaviour of silver nanoparticles. Chemosphere 191:616–625

    CAS  Google Scholar 

  • Elsaesser A, Howard CV (2012) Toxicology of nanoparticles. Adv Drug Deliv Rev 64:129–137

    CAS  Google Scholar 

  • Fabrega J, Fawcett SR, Renshaw JC, Lead JR (2009) Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ Sci Technol 43:7285–7290

    CAS  Google Scholar 

  • Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531

    CAS  Google Scholar 

  • Fan W, Peng R, Li X, Ren J, Liu T, Wang X (2016) Effect of titanium dioxide nanoparticles on copper toxicity to Daphnia magna in water: role of organic matter. Water Res 105:129–137

    CAS  Google Scholar 

  • Feng ZV, Gunsolus IL, Qiu TA, Hurley KR, Nyberg LH, Frew H, Johnson KP, Vartanian AM, Jacob LM, Lohse SE (2015) Impacts of gold nanoparticle charge and ligand type on surface binding and toxicity to Gram-negative and Gram-positive bacteria. Chem Sci 6:5186–5196

    CAS  Google Scholar 

  • Fernandes M, Rosenkranz P, Ford A, Christofi N, Stone V (2006) Ecotoxicology of nanoparticles (NPs). SETAC Globe:43–45

    Google Scholar 

  • Folens K, van Acker T, Bolea-Fernandez E, Cornelis G, Vanhaecke F, Du Laing G, Rauch S (2018) Identification of platinum nanoparticles in road dust leachate by single particle inductively coupled plasma-mass spectrometry. Sci Total Environ 615:849–856

    CAS  Google Scholar 

  • Forest V, Leclerc L, Hochepied J-F, Trouvé A, Sarry G, Pourchez J (2017) Impact of cerium oxide nanoparticles shape on their in vitro cellular toxicity. Toxicol In Vitro 38:136–141

    CAS  Google Scholar 

  • Fortner J, Lyon D, Sayes C, Boyd A, Falkner J, Hotze E, Alemany L, Tao Y, Guo W, Ausman K (2005) C60 in water: nanocrystal formation and microbial response. Environ Sci Technol 39:4307–4316

    CAS  Google Scholar 

  • Frenk S, Ben-Moshe T, Dror I, Berkowitz B, Minz D (2013) Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS One 8:e84441

    Google Scholar 

  • Fröhlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine 7:5577–5591

    Google Scholar 

  • Gaiser BK, Biswas A, Rosenkranz P, Jepson MA, Lead JR, Stone V, Tyler CR, Fernandes TF (2011) Effects of silver and cerium dioxide micro-and nano-sized particles on Daphnia magna. J Environ Monit 13:1227–1235

    CAS  Google Scholar 

  • Gambardella C, Costa E, Piazza V, Fabbrocini A, Magi E, Faimali M, Garaventa F (2015) Effect of silver nanoparticles on marine organisms belonging to different trophic levels. Mar Environ Res 111:41–49

    CAS  Google Scholar 

  • Garner KL, Keller AA (2014) Emerging patterns for engineered nanomaterials in the environment: a review of fate and toxicity studies. J Nanopart Res 16:2503

    Google Scholar 

  • Garner KL, Suh S, Keller AA (2017) Assessing the risk of engineered nanomaterials in the environment: development and application of the nanoFate model. Environ Sci Technol 51:5541–5551

    CAS  Google Scholar 

  • Ge Y, Priester JH, van de Werfhorst LC, Schimel JP, Holden PA (2013) Potential mechanisms and environmental controls of TiO2 nanoparticle effects on soil bacterial communities. Environ Sci Technol 47:14411–14417

    CAS  Google Scholar 

  • Geitner NK, Marinakos SM, Guo C, O’brien N, Wiesner MR (2016) Nanoparticle surface affinity as a predictor of trophic transfer. Environ Sci Technol 50:6663–6669

    CAS  Google Scholar 

  • Geller W, Müller H (1981) The filtration apparatus of Cladocera: filter mesh-sizes and their implications on food selectivity. Oecologia 49:316–321

    Google Scholar 

  • Georgantzopoulou A, Cambier S, Serchi T, Kruszewski M, Balachandran YL, Grysan P, Audinot J-N, Ziebel J, Guignard C, Gutleb AC (2016) Inhibition of multixenobiotic resistance transporters (MXR) by silver nanoparticles and ions in vitro and in Daphnia magna. Sci Total Environ 569:681–689

    Google Scholar 

  • Ghafari P, St-Denis CH, Power ME, Jin X, Tsou V, Mandal HS, Bols NC, Tang XS (2008) Impact of carbon nanotubes on the ingestion and digestion of bacteria by ciliated protozoa. Nat Nanotechnol 3:347–351

    CAS  Google Scholar 

  • Giese B, Klaessig F, Park B, Kaegi R, Steinfeldt M, Wigger H, Gleich A, Gottschalk F (2018) Risks, release and concentrations of engineered nanomaterial in the environment. Sci Rep 8:1565

    Google Scholar 

  • Gökçe D, Köytepe S, Özcan İ (2018) Effects of nanoparticles on Daphnia magna population dynamics. Chem Ecol 34:301–323

    Google Scholar 

  • Gonçalves RA, de Oliveira Franco Rossetto AL, Nogueira DJ, Vicentini DS, Matias WG (2018) Comparative assessment of toxicity of ZnO and amine-functionalized ZnO nanorods toward Daphnia magna in acute and chronic multigenerational tests. Aquat Toxicol 197:32–40

    Google Scholar 

  • Gondikas AP, Kammer F, Reed RB, Wagner S, Ranville JF, Hofmann T (2014) Release of TiO2 nanoparticles from sunscreens into surface waters: a one-year survey at the old Danube recreational lake. Environ Sci Technol 48:5415–5422

    CAS  Google Scholar 

  • Gondikas A, von der Kammer F, Kaegi R, Borovinskaya O, Neubauer E, Navratilova J, Praetorius A, Cornelis G, Hofmann T (2018) Where is the nano? Analytical approaches for the detection and quantification of TiO2 engineered nanoparticles in surface waters. Environ Sci Nano 5:313–326

    CAS  Google Scholar 

  • Goswami L, Kim K-H, Deep A, Das P, Bhattacharya SS, Kumar S, Adelodun AA (2017) Engineered nano particles: nature, behavior, and effect on the environment. J Environ Manag 196:297–315

    CAS  Google Scholar 

  • Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13:1145–1155

    CAS  Google Scholar 

  • Gottschalk F, Sun T, Nowack B (2013) Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut 181:287–300

    CAS  Google Scholar 

  • Goulden CE, Hornig LL (1980) Population oscillations and energy reserves in planktonic cladocera and their consequences to competition. Proc Natl Acad Sci 77:1716–1720

    CAS  Google Scholar 

  • Greulich C, Braun D, Peetsch A, Diendorf J, Siebers B, Epple M, Köller M (2012) The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range. RSC Adv 2:6981–6987

    CAS  Google Scholar 

  • Gunsolus IL, Mousavi MP, Hussein K, Bühlmann P, Haynes CL (2015) Effects of humic and fulvic acids on silver nanoparticle stability, dissolution, and toxicity. Environ Sci Technol 49:8078–8086

    CAS  Google Scholar 

  • Guo Z, Chen G, Zeng G, Yan M, Huang Z, Jiang L, Peng C, Wang J, Xiao Z (2017) Are silver nanoparticles always toxic in the presence of environmental anions? Chemosphere 171:318–323

    CAS  Google Scholar 

  • Handy RD, Henry TB, Scown TM, Johnston BD, Tyler CR (2008a) Manufactured nanoparticles: their uptake and effects on fish – a mechanistic analysis. Ecotoxicology 17:396–409

    CAS  Google Scholar 

  • Handy RD, von der Kammer F, Lead JR, Hassellöv M, Owen R, Crane M (2008b) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314

    CAS  Google Scholar 

  • Hansen SF, Heggelund LR, Besora PR, Mackevica A, Boldrin A, Baun A (2016) Nanoproducts – what is actually available to European consumers? Environ Sci Nano 3:169–180

    Google Scholar 

  • Hartmann NB, von der Kammer F, Hofmann T, Baalousha M, Ottofuelling S, Baun A (2010) Algal testing of titanium dioxide nanoparticles – testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology 269:190–197

    CAS  Google Scholar 

  • Hartmann G, Hutterer C, Schuster M (2013) Ultra-trace determination of silver nanoparticles in water samples using cloud point extraction and ETAAS. J Anal At Spectrom 28:567–572

    CAS  Google Scholar 

  • Hassellöv M, Readman JW, Ranville JF, Tiede K (2008) Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology 17:344–361

    Google Scholar 

  • Heinlaan M, Ivask A, Blinova I, Dubourguier H-C, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316

    CAS  Google Scholar 

  • Heinlaan M, Muna M, Juganson K, Oriekhova O, Stoll S, Kahru A, Slaveykova VI (2017) Exposure to sublethal concentrations of Co3O4 and Mn2O3 nanoparticles induced elevated metal body burden in Daphnia magna. Aquat Toxicol 189:123–133

    CAS  Google Scholar 

  • Hjorth R, Coutris C, Nguyen NHA, Sevcu A, Gallego-Urrea JA, Baun A, Joner EJ (2017a) Ecotoxicity testing and environmental risk assessment of iron nanomaterials for sub-surface remediation – recommendations from the FP7 project NanoRem. Chemosphere 182:525–531

    CAS  Google Scholar 

  • Hjorth R, Holden PA, Hansen SF, Colman BP, Grieger K, Hendren CO (2017b) The role of alternative testing strategies in environmental risk assessment of engineered nanomaterials. Environ Sci Nano 4:292–301

    CAS  Google Scholar 

  • Hjorth R, Skjolding LM, Sørensen SN, Baun A (2017c) Regulatory adequacy of aquatic ecotoxicity testing of nanomaterials. NanoImpact 8:28–37

    Google Scholar 

  • Hoecke KV, Quik JT, Mankiewicz-Boczek J, Schamphelaere KAD, Elsaesser A, Meeren PVD, Barnes C, Mckerr G, Howard CV, Meent DVD (2009) Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests. Environ Sci Technol 43:4537–4546

    Google Scholar 

  • Hoet PH, Brüske-Hohlfeld I, Salata OV (2004) Nanoparticles – known and unknown health risks. J Nanobiotechnol 2:12

    Google Scholar 

  • Holden PA, Klaessig F, Turco RF, Priester JH, Rico CM, Avila-Arias H, Mortimer M, Pacpaco K, Gardea-Torresdey JL (2014) Evaluation of exposure concentrations used in assessing manufactured nanomaterial environmental hazards: are they relevant? Environ Sci Technol 48:10541–10551

    CAS  Google Scholar 

  • Hossain ST, Mukherjee SK (2012) CdO nanoparticle toxicity on growth, morphology, and cell division in Escherichia coli. Langmuir 28:16614–16622

    CAS  Google Scholar 

  • Hotze EM, Phenrat T, Lowry GV (2010) Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J Environ Qual 39:1909–1924

    CAS  Google Scholar 

  • Hristozov D, Gottardo S, Semenzin E, Oomen A, Bos P, Peijnenburg W, van Tongeren M, Nowack B, Hunt N, Brunelli A (2016) Frameworks and tools for risk assessment of manufactured nanomaterials. Environ Int 95:36–53

    CAS  Google Scholar 

  • Hu Y, Chen X, Yang K, Lin D (2017) Distinct toxicity of silver nanoparticles and silver nitrate to Daphnia magna in M4 medium and surface water. Sci Total Environ 618:838–846

    Google Scholar 

  • Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids (8 pp). Environ Sci Pollut Res 13:225–232

    CAS  Google Scholar 

  • Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang BI, Gu MB (2008) Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4:746–750

    CAS  Google Scholar 

  • Hyung H, Fortner JD, Hughes JB, Kim J-H (2007) Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol 41:179–184

    CAS  Google Scholar 

  • Iswarya V, Bhuvaneshwari M, Chandrasekaran N, Mukherjee A (2016) Individual and binary toxicity of anatase and rutile nanoparticles towards Ceriodaphnia dubia. Aquat Toxicol 178:209–221

    CAS  Google Scholar 

  • Iswarya V, Johnson J, Parashar A, Pulimi M, Chandrasekaran N, Mukherjee A (2017) Modulatory effects of Zn2+ ions on the toxicity of citrate-and PVP-capped gold nanoparticles towards freshwater algae, Scenedesmus obliquus. Environ Sci Pollut Res 24:3790–3801

    CAS  Google Scholar 

  • Jaiswal S, Mishra P (2018) Antimicrobial and antibiofilm activity of curcumin-silver nanoparticles with improved stability and selective toxicity to bacteria over mammalian cells. Med Microbiol Immunol 207:39–53

    CAS  Google Scholar 

  • Jarvie HP, King SM (2010) Just scratching the surface? New techniques show how surface functionality of nanoparticles influences their environmental fate. Nano Today 5:248–250

    Google Scholar 

  • Jensen LHS, Skjolding LM, Thit A, Sørensen SN, Købler C, Mølhave K, Baun A (2017) Not all that glitters is gold – electron microscopy study on uptake of gold nanoparticles in Daphnia magna and related artifacts. Environ Toxicol Chem 36:1503–1509

    CAS  Google Scholar 

  • Ji J, Long Z, Lin D (2011) Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chem Eng J 170:525–530

    CAS  Google Scholar 

  • Jiang W, Kim BY, Rutka JT, Chan WC (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3:145–150

    CAS  Google Scholar 

  • Jiang W, Mashayekhi H, Xing B (2009) Bacterial toxicity comparison between nano-and micro-scaled oxide particles. Environ Pollut 157:1619–1625

    CAS  Google Scholar 

  • Jiang C, Aiken GR, Hsu-Kim H (2015) Effects of natural organic matter properties on the dissolution kinetics of zinc oxide nanoparticles. Environ Sci Technol 49:11476–11484

    CAS  Google Scholar 

  • Jiménez AS, Sun T, van Tongeren M, Wohlleben W (2016) The flows of engineered nanomaterials from production, use, and disposal to the environment. Indoor Outdoor Nanopart 48:209

    Google Scholar 

  • Jin X, Li M, Wang J, Marambio-Jones C, Peng F, Huang X, Damoiseaux R, Hoek EM (2010) High-throughput screening of silver nanoparticle stability and bacterial inactivation in aquatic media: influence of specific ions. Environ Sci Technol 44:7321–7328

    CAS  Google Scholar 

  • Jonczyk E, Gilron G (2005) Acute and chronic toxicity testing with Daphnia Sp. In: Blaise C, Férard JF (eds) Small-scale freshwater toxicity investigations. Springer, Dordrecht

    Google Scholar 

  • Kadukova J (2016) Surface sorption and nanoparticle production as a silver detoxification mechanism of the freshwater alga Parachlorella kessleri. Bioresour Technol 216:406–413

    CAS  Google Scholar 

  • Karunakaran G, Suriyaprabha R, Rajendran V, Kannan N (2015) Toxicity evaluation based on particle size, contact angle and zeta potential of SiO2 and Al2O3 on the growth of green algae. Adv Nano Res 3:243–255

    Google Scholar 

  • Kashiwada S (2006) Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environ Health Perspect 114:1697–1702

    CAS  Google Scholar 

  • Keller AA, Lazareva A (2013) Predicted releases of engineered nanomaterials: from global to regional to local. Environ Sci Technol Lett 1:65–70

    Google Scholar 

  • Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji Z (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44:1962–1967

    CAS  Google Scholar 

  • Keller AA, Mcferran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1–17

    Google Scholar 

  • Kennedy AJ, Chappell MA, Bednar AJ, Ryan AC, Laird JG, Stanley JK, Steevens JA (2012) Impact of organic carbon on the stability and toxicity of fresh and stored silver nanoparticles. Environ Sci Technol 46:10772–10780

    CAS  Google Scholar 

  • Kessler R (2011) Engineered nanoparticles in consumer products: understanding a new ingredient. Environ Health Perspect 119:A120–A125

    Google Scholar 

  • Khan FR, Kennaway GM, Croteau M-N, Dybowska A, Smith BD, Nogueira AJA, Rainbow PS, Luoma SN, Valsami-Jones E (2014) In vivo retention of ingested Au NPs by Daphnia magna: no evidence for trans-epithelial alimentary uptake. Chemosphere 100:97–104

    CAS  Google Scholar 

  • Kim KT, Klaine SJ, Cho J, Kim S-H, Kim SD (2010) Oxidative stress responses of Daphnia magna exposed to TiO2 nanoparticles according to size fraction. Sci Total Environ 408:2268–2272

    CAS  Google Scholar 

  • Kim I, Lee B-T, Kim H-A, Kim K-W, Kim SD, Hwang Y-S (2016) Citrate coated silver nanoparticles change heavy metal toxicities and bioaccumulation of Daphnia magna. Chemosphere 143:99–105

    CAS  Google Scholar 

  • Kim S, Samanta P, Yoo J, Kim W-K, Jung J (2017) Time-dependent toxicity responses in Daphnia magna exposed to CuO and ZnO nanoparticles. Bull Environ Contam Toxicol 98:502–507

    CAS  Google Scholar 

  • Kittler S, Greulich C, Diendorf J, Koller M, Epple M (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22:4548–4554

    CAS  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, Mclaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    CAS  Google Scholar 

  • Klaine SJ, Koelmans AA, Horne N, Carley S, Handy RD, Kapustka L, Nowack B, von der Kammer F (2012) Paradigms to assess the environmental impact of manufactured nanomaterials. Environ Toxicol Chem 31:3–14

    CAS  Google Scholar 

  • Köser J, Engelke M, Hoppe M, Nogowski A, Filser J, Thöming J (2017) Predictability of silver nanoparticle speciation and toxicity in ecotoxicological media. Environ Sci Nano 4:1470–1483

    Google Scholar 

  • Kraas M, Schlich K, Knopf B, Wege F, Kägi R, Terytze K, Hund-Rinke K (2017) Long-term effects of sulfidized silver nanoparticles in sewage sludge on soil microflora. Environ Toxicol Chem 36:3305–3313

    CAS  Google Scholar 

  • Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011) Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic Biol Med 51:1872–1881

    CAS  Google Scholar 

  • Kumar V, Kumari A, Guleria P, Yadav SK (2012) Evaluating the toxicity of selected types of nanochemicals. Rev Environ Contam Toxicol 215:39–121

    Google Scholar 

  • Kümmerer K, Menz J, Schubert T, Thielemans W (2011) Biodegradability of organic nanoparticles in the aqueous environment. Chemosphere 82:1387–1392

    Google Scholar 

  • Kvitek L, Panáček A, Soukupova J, Kolar M, Vecerova R, Prucek R, Holecová M, Zboril R (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112:5825–5834

    CAS  Google Scholar 

  • Kwak S-Y, Kim SH, Kim SS (2001) Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. 1. Preparation and characterization of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane. Environ Sci Technol 35:2388–2394

    CAS  Google Scholar 

  • Laborda F, Bolea E, Cepriá G, Gómez MT, Jiménez MS, Pérez-Arantegui J, Castillo JR (2016a) Detection, characterization and quantification of inorganic engineered nanomaterials: a review of techniques and methodological approaches for the analysis of complex samples. Anal Chim Acta 904:10–32

    CAS  Google Scholar 

  • Laborda F, Bolea E, Jiménez-Lamana J (2016b) Single particle inductively coupled plasma mass spectrometry for the analysis of inorganic engineered nanoparticles in environmental samples. Trends Environ Anal Chem 9:15–23

    CAS  Google Scholar 

  • Lapresta-Fernández A, Fernández A, Blasco J (2012) Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms. TrAC Trends Anal Chem 32:40–59

    Google Scholar 

  • Larguinho M, Correia D, Diniz MS, Baptista PV (2014) Evidence of one-way flow bioaccumulation of gold nanoparticles across two trophic levels. J Nanopart Res 16:2549

    Google Scholar 

  • Lee W-M, An Y-J (2013) Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: no evidence of enhanced algal toxicity under UV pre-irradiation. Chemosphere 91:536–544

    CAS  Google Scholar 

  • Lee W-M, Yoon S-J, Shin Y-J, An Y-J (2015) Trophic transfer of gold nanoparticles from Euglena gracilis or Chlamydomonas reinhardtii to Daphnia magna. Environ Pollut 201:10–16

    CAS  Google Scholar 

  • Lei C, Zhang L, Yang K, Zhu L, Lin D (2016) Toxicity of iron-based nanoparticles to green algae: effects of particle size, crystal phase, oxidation state and environmental aging. Environ Pollut 218:505–512

    CAS  Google Scholar 

  • Lei C, Sun Y, Tsang DCW, Lin D (2018) Environmental transformations and ecological effects of iron-based nanoparticles. Environ Pollut 232:10–30

    CAS  Google Scholar 

  • Levard C, Michel FM, Wang Y, Choi Y, Eng P, Brown GE (2011a) Probing Ag nanoparticle surface oxidation in contact with (in) organics: an X-ray scattering and fluorescence yield approach. J Synchrotron Radiat 18:871–878

    CAS  Google Scholar 

  • Levard C, Reinsch BC, Michel FM, Oumahi C, Lowry GV, Brown GE Jr (2011b) Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environ Sci Technol 45:5260–5266

    CAS  Google Scholar 

  • Levard C, Hotze EM, Lowry GV, Brown GE Jr (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46:6900–6914

    CAS  Google Scholar 

  • Li T, Albee B, Alemayehu M, Diaz R, Ingham L, Kamal S, Rodriguez M, Bishnoi SW (2010a) Comparative toxicity study of Ag, Au, and Ag–Au bimetallic nanoparticles on Daphnia magna. Anal Bioanal Chem 398:689–700

    CAS  Google Scholar 

  • Li W-R, Xie X-B, Shi Q-S, Zeng H-Y, Ou-Yang Y-S, Chen Y-B (2010b) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85:1115–1122

    CAS  Google Scholar 

  • Li X, Lenhart JJ, Walker HW (2010c) Dissolution-accompanied aggregation kinetics of silver nanoparticles. Langmuir 26:16690–16698

    CAS  Google Scholar 

  • Li M, Zhu L, Lin D (2011) Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ Sci Technol 45:1977–1983

    CAS  Google Scholar 

  • Li M, Lin D, Zhu L (2013) Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli. Environ Pollut 173:97–102

    CAS  Google Scholar 

  • Li L, Wu H, Ji C, van Gestel CA, Allen HE, Peijnenburg WJ (2015a) A metabolomic study on the responses of Daphnia magna exposed to silver nitrate and coated silver nanoparticles. Ecotoxicol Environ Saf 119:66–73

    CAS  Google Scholar 

  • Li X, Schirmer K, Bernard L, Sigg L, Pillai S, Behra R (2015b) Silver nanoparticle toxicity and association with the alga Euglena gracilis. Environ Sci Nano 2:594–602

    CAS  Google Scholar 

  • Li D, Li B, Wang Q, Hou N, Li C, Cheng X (2016a) Toxicity of TiO2 nanoparticle to denitrifying strain CFY1 and the impact on microbial community structures in activated sludge. Chemosphere 144:1334–1341

    CAS  Google Scholar 

  • Li Y, Niu J, Shang E, Crittenden JC (2016b) Influence of dissolved organic matter on photogenerated reactive oxygen species and metal-oxide nanoparticle toxicity. Water Res 98:9–18

    CAS  Google Scholar 

  • Li L, Sillanpää M, Schultz E (2017a) Influence of titanium dioxide nanoparticles on cadmium and lead bioaccumulations and toxicities to Daphnia magna. J Nanopart Res 19:223

    Google Scholar 

  • Li Y, Qin T, Ingle T, Yan J, He W, Yin J-J, Chen T (2017b) Differential genotoxicity mechanisms of silver nanoparticles and silver ions. Arch Toxicol 91:509–519

    CAS  Google Scholar 

  • Limbach LK, Bereiter R, Müller E, Krebs R, Gälli R, Stark WJ (2008) Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearing efficiency. Environ Sci Technol 42:5828–5833

    CAS  Google Scholar 

  • Liu J, Sonshine DA, Shervani S, Hurt RH (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4:6903–6913

    CAS  Google Scholar 

  • Liu W, Zhou Q, Liu J, Fu J, Liu S, Jiang G (2011) Environmental and biological influences on the stability of silver nanoparticles. Chin Sci Bull 56:2009–2015

    CAS  Google Scholar 

  • Liu L, Fan W, Lu H, Xiao W (2015) Effects of the interaction between TiO2 with different percentages of exposed {001} facets and Cu2+ on biotoxicity in Daphnia magna. Sci Rep 5:11121

    CAS  Google Scholar 

  • Liu Y, Fan W, Xu Z, Peng W, Luo S (2017) Transgenerational effects of reduced graphene oxide modified by Au, Ag, Pd, Fe3O4, Co3O4 and SnO2 on two generations of Daphnia magna. Carbon 122:669–679

    CAS  Google Scholar 

  • Liu K, He Z, Byrne HJ, Curtin J, Tian F (2018) Investigating the role of shape and size of gold 2 nanoparticles on their toxicities to fungi 3. Int J Environ Res Public Health 15(5):E998. https://doi.org/10.3390/ijerph15050998

    Article  CAS  Google Scholar 

  • Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H, Tam PK-H, Chiu J-F, Che C-M (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924

    CAS  Google Scholar 

  • Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H, Tam PK-H, Chiu J-F, Che C-M (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12:527–534

    CAS  Google Scholar 

  • Lopes I, Ribeiro R, Antunes F, Rocha-Santos T, Rasteiro M, Soares A, Gonçalves F, Pereira R (2012) Toxicity and genotoxicity of organic and inorganic nanoparticles to the bacteria Vibrio fischeri and Salmonella typhimurium. Ecotoxicology 21:637–648

    CAS  Google Scholar 

  • Lopes S, Ribeiro F, Wojnarowicz J, Łojkowski W, Jurkschat K, Crossley A, Soares AM, Loureiro S (2014) Zinc oxide nanoparticles toxicity to Daphnia magna: size-dependent effects and dissolution. Environ Toxicol Chem 33:190–198

    CAS  Google Scholar 

  • Lovern SB, Klaper R (2006) Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environ Toxicol Chem 25:1132–1137

    CAS  Google Scholar 

  • Lovern SB, Strickler JR, Klaper R (2007a) Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C60, and C60HxC70Hx). Environ Sci Technol 41:4465–4470

    CAS  Google Scholar 

  • Lovern SB, Strickler JR, Klaper R (2007b) Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C(60), and C(60)HxC(70)Hx). Environ Sci Technol 41:4465–4470

    CAS  Google Scholar 

  • Lovern SB, Owen HA, Klaper R (2008) Electron microscopy of gold nanoparticle intake in the gut of Daphnia magna. Nanotoxicology 2:43–48

    CAS  Google Scholar 

  • Lu G, Yang H, Xia J, Zong Y, Liu J (2017) Toxicity of Cu and Cr nanoparticles to Daphnia magna. Water Air Soil Pollut 228:18

    Google Scholar 

  • Luo P, Roca A, Tiede K, Privett K, Jiang J, Pinkstone J, Ma G, Veinot J, Boxall A (2018) Application of nanoparticle tracking analysis for characterising the fate of engineered nanoparticles in sediment-water systems. J Environ Sci 64:62–71

    Google Scholar 

  • Luoma SN, Stoiber T, Croteau M-N, Römer I, Merrifeld R, Lead JR (2016) Effect of cysteine and humic acids on bioavailability of Ag from Ag nanoparticles to a freshwater snail. NanoImpact 2:61–69

    Google Scholar 

  • Lv X, Huang B, Zhu X, Jiang Y, Chen B, Tao Y, Zhou J, Cai Z (2017) Mechanisms underlying the acute toxicity of fullerene to Daphnia magna: energy acquisition restriction and oxidative stress. Water Res 123:696–703

    CAS  Google Scholar 

  • Ma H, Williams PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles – a review. Environ Pollut 172:76–85

    CAS  Google Scholar 

  • Ma Y, Metch JW, Vejerano EP, Miller IJ, Leon EC, Marr LC, Vikesland PJ, Pruden A (2015) Microbial community response of nitrifying sequencing batch reactors to silver, zero-valent iron, titanium dioxide and cerium dioxide nanomaterials. Water Res 68:87–97

    CAS  Google Scholar 

  • Madden AS, Hochella MF, Luxton TP (2006) Insights for size-dependent reactivity of hematite nanomineral surfaces through Cu2+ sorption. Geochim Cosmochim Acta 70:4095–4104

    CAS  Google Scholar 

  • Majedi SM, Lee HK (2016) Recent advances in the separation and quantification of metallic nanoparticles and ions in the environment. TrAC Trends Anal Chem 75:183–196

    CAS  Google Scholar 

  • Marambio-Jones C, Hoek EM (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551

    CAS  Google Scholar 

  • Markus A, Parsons J, Roex E, de Voogt P, Laane R (2016) Modelling the transport of engineered metallic nanoparticles in the river Rhine. Water Res 91:214–224

    CAS  Google Scholar 

  • Markus AA, Parsons JR, Roex EW, de Voogt P, Laane RW (2017) Modelling the release, transport and fate of engineered nanoparticles in the aquatic environment – a review. Rev Environ Contam Toxicol 243:53–87

    Google Scholar 

  • Markus A, Krystek P, Tromp P, Parsons J, Roex E, de Voogt P, Laane R (2018) Determination of metal-based nanoparticles in the river Dommel in the Netherlands via ultrafiltration, HR-ICP-MS and SEM. Sci Total Environ 631:485–495

    Google Scholar 

  • Mattsson M-O, Simkó M (2017) The changing face of nanomaterials: risk assessment challenges along the value chain. Regul Toxicol Pharmacol 84:105–115

    CAS  Google Scholar 

  • Matzke M, Jurkschat K, Backhaus T (2014) Toxicity of differently sized and coated silver nanoparticles to the bacterium Pseudomonas putida: risks for the aquatic environment? Ecotoxicology 23:818–829

    CAS  Google Scholar 

  • Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdörster G, Philbert MA, Ryan J, Seaton A, Stone V (2006) Safe handling of nanotechnology. Nature 444:267–269

    CAS  Google Scholar 

  • Mcgillicuddy E, Murray I, Kavanagh S, Morrison L, Fogarty A, Cormican M, Dockery P, Prendergast M, Rowan N, Morris D (2017) Silver nanoparticles in the environment: sources, detection and ecotoxicology. Sci Total Environ 575:231–246

    CAS  Google Scholar 

  • Mcteer J, Dean AP, White KN, Pittman JK (2014) Bioaccumulation of silver nanoparticles into Daphnia magna from a freshwater algal diet and the impact of phosphate availability. Nanotoxicology 8:305–316

    CAS  Google Scholar 

  • Melvin SD, Wilson SP (2013) The utility of behavioral studies for aquatic toxicology testing: a meta-analysis. Chemosphere 93:2217–2223

    CAS  Google Scholar 

  • Metreveli G, Frombold B, Seitz F, Grün A, Philippe A, Rosenfeldt RR, Bundschuh M, Schulz R, Manz W, Schaumann GE (2016) Impact of chemical composition of ecotoxicological test media on the stability and aggregation status of silver nanoparticles. Environ Sci Nano 3:418–433

    CAS  Google Scholar 

  • Metzler D, Erdem A, Huang C (2018) Influence of Algae Age and population on the response to TiO2 nanoparticles. Int J Environ Res Public Health 15:585

    Google Scholar 

  • Miao A-J, Luo Z, Chen C-S, Chin W-C, Santschi PH, Quigg A (2010) Intracellular uptake: a possible mechanism for silver engineered nanoparticle toxicity to a freshwater alga Ochromonas danica. PLoS One 5:e15196

    CAS  Google Scholar 

  • Miao L, Wang P, Wang C, Hou J, Yao Y, Liu J, Lv B, Yang Y, You G, Xu Y, Liu Z, Liu S (2018) Effect of TiO2 and CeO2 nanoparticles on the metabolic activity of surficial sediment microbial communities based on oxygen microelectrodes and high-throughput sequencing. Water Res 129:287–296

    CAS  Google Scholar 

  • Minetto D, Volpi Ghirardini A, Libralato G (2016) Saltwater ecotoxicology of Ag, Au, CuO, TiO2, ZnO and C60 engineered nanoparticles: an overview. Environ Int 92-93:189–201

    CAS  Google Scholar 

  • Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A (2013) Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48–54

    CAS  Google Scholar 

  • Mitrano DM, Lesher EK, Bednar A, Monserud J, Higgins CP, Ranville JF (2012) Detecting nanoparticulate silver using single-particle inductively coupled plasma–mass spectrometry. Environ Toxicol Chem 31:115–121

    CAS  Google Scholar 

  • Moore MN (1990) Lysosomal cytochemistry in marine environmental monitoring. Histochem J 22:187–191

    CAS  Google Scholar 

  • Moore MN (2002) Biocomplexity: the post-genome challenge in ecotoxicology. Aquat Toxicol 59:1–15

    CAS  Google Scholar 

  • Moore M (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976

    CAS  Google Scholar 

  • Moore MN, Allen JI (2002) A computational model of the digestive gland epithelial cell of marine mussels and its simulated responses to oil-derived aromatic hydrocarbons. Mar Environ Res 54:579–584

    CAS  Google Scholar 

  • Moore MN, Depledge MH, Readman JW, Leonard DP (2004) An integrated biomarker-based strategy for ecotoxicological evaluation of risk in environmental management. Mutat Res Fundam Mol Mech Mutagen 552:247–268

    CAS  Google Scholar 

  • Moreno-Garrido I, Pérez S, Blasco J (2015) Toxicity of silver and gold nanoparticles on marine microalgae. Mar Environ Res 111:60–73

    CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346

    CAS  Google Scholar 

  • Mottier A, Mouchet F, Pinelli É, Gauthier L, Flahaut E (2017) Environmental impact of engineered carbon nanoparticles: from releases to effects on the aquatic biota. Curr Opin Biotechnol 46:1–6

    CAS  Google Scholar 

  • Mudunkotuwa IA, Grassian VH (2011) The devil is in the details (or the surface): impact of surface structure and surface energetics on understanding the behavior of nanomaterials in the environment. J Environ Monit 13:1135–1144

    CAS  Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453

    CAS  Google Scholar 

  • Müller E, Behra R, Sigg L (2016) Toxicity of engineered copper (Cu0) nanoparticles to the green alga Chlamydomonas reinhardtii. Environ Chem 13:457–463

    Google Scholar 

  • Muna M, Heinlaan M, Blinova I, Vija H, Kahru A (2017) Evaluation of the effect of test medium on total Cu body burden of nano CuO-exposed Daphnia magna: a TXRF spectroscopy study. Environ Pollut 231:1488–1496

    CAS  Google Scholar 

  • Na K, Bum Lee T, Park K-H, Shin E-K, Lee Y-B, Choi H-K (2003) Self-assembled nanoparticles of hydrophobically-modified polysaccharide bearing vitamin H as a targeted anti-cancer drug delivery system. Eur J Pharm Sci 18:165–173

    CAS  Google Scholar 

  • The Nanodatabase (2018) http://nanodb.dk/

  • Nasser F, Davis A, Valsami-Jones E, Lynch I (2016) Shape and charge of gold nanomaterials influence survivorship, oxidative stress and moulting of Daphnia magna. Nano 6:222

    Google Scholar 

  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964

    CAS  Google Scholar 

  • Neal AL (2008) What can be inferred from bacterium–nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 17:362

    CAS  Google Scholar 

  • Nicolas M, Séverine LM, Anne B-N, Pascal P (2016) Effect of two TiO2 nanoparticles on the growth of unicellular green algae using the OECD 201 test guideline: influence of the exposure system. Toxicol Environ Chem 98:860–876

    CAS  Google Scholar 

  • Nogueira PFM, Nakabayashi D, Zucolotto V (2015) The effects of graphene oxide on green algae Raphidocelis subcapitata. Aquat Toxicol 166:29–35

    CAS  Google Scholar 

  • Noss C, Dabrunz A, Rosenfeldt RR, Lorke A, Schulz R (2013) Three-dimensional analysis of the swimming behavior of Daphnia magna exposed to nanosized titanium dioxide. PLoS One 8:e80960

    Google Scholar 

  • Novak S, Jemec Kokalj A, Hočevar M, Godec M, Drobne D (2018) The significance of nanomaterial post-exposure responses in Daphnia magna standard acute immobilisation assay: example with testing TiO2 nanoparticles. Ecotoxicol Environ Saf 152:61–66

    CAS  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22

    CAS  Google Scholar 

  • Nowack B, Ranville JF, Diamond S, Gallego-Urrea JA, Metcalfe C, Rose J, Horne N, Koelmans AA, Klaine SJ (2012) Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem 31:50–59

    CAS  Google Scholar 

  • Nune SK, Chanda N, Shukla R, Katti K, Kulkarni RR, Thilakavathy S, Mekapothula S, Kannan R, Katti KV (2009) Green nanotechnology from tea: phytochemicals in tea as building blocks for production of biocompatible gold nanoparticles. J Mater Chem 19:2912–2920

    CAS  Google Scholar 

  • Nyberg L, Turco RF, Nies L (2008) Assessing the impact of nanomaterials on anaerobic microbial communities. Environ Sci Technol 42:1938–1943

    CAS  Google Scholar 

  • Nyholm N, Peterson HG (1997) Laboratory bioassays with microalgae. CRC Press, Boca Raton

    Google Scholar 

  • O’Keefe TC, Brewer MC, Dodson SI (1998) Swimming behavior of Daphnia: its role in determining predation risk. J Plankton Res 20:973–984

    Google Scholar 

  • Oberdörster E (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112:1058

    Google Scholar 

  • OECD (2011) Test No. 201: Freshwater alga and cyanobacteria, growth inhibition test [Online]. OECD Publishing. Available: https://www.oecd-ilibrary.org/environment/test-no-201-alga-growthinhibition-test_9789264069923-en. Accessed 13 March 2018

  • OECD (2014) Ecotoxicology and environmental fate of manufactured nanomaterials: test guidelines [Online]. http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV/JM/MONO%282014%291&doclanguage=en. Accessed 04 Apr 2018

  • OECD (2017a) 28-day (Subacute) inhalation toxicity study [Online]. http://www.oecd-ilibrary.org/docserver/download/9741201e.pdf?expires=1520925030&id=id&accname=guest&checksum=936D2F4A91857FF5F257958C9BD2664A. Accessed 13 Mar 2018

  • OECD (2017b) 90-day (Subchronic) inhalation toxicity study [Online]. http://www.oecd-ilibrary.org/docserver/download/9741301e.pdf?expires=1520925206&id=id&accname=guest&checksum=A86B5A2CC113CC021C4108A044C45AC4. Accessed 13 Mar 2018

  • OECD (2017c) Dispersion stability of nanomaterials in simulated environmental media [Online]. http://www.oecd-ilibrary.org/docserver/download/9717701e.pdf?expires=1520923737&id=id&accname=guest&checksum=A807794DAB0F036965D880F8711F459C. Accessed 13 Mar 2018

  • Oleszczuk P, Jośko I, Skwarek E (2015) Surfactants decrease the toxicity of ZnO, TiO2 and Ni nanoparticles to Daphnia magna. Ecotoxicology 24:1923–1932

    CAS  Google Scholar 

  • Omar FM, Aziz HA, Stoll S (2014) Aggregation and disaggregation of ZnO nanoparticles: influence of pH and adsorption of Suwannee River humic acid. Sci Total Environ 468:195–201

    Google Scholar 

  • Oukarroum A, Bras S, Perreault F, Popovic R (2012) Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicol Environ Saf 78:80–85

    CAS  Google Scholar 

  • Oukarroum A, Zaidi W, Samadani M, Dewez D (2017) Toxicity of nickel oxide nanoparticles on a freshwater green algal strain of Chlorella vulgaris. Biomed Res Int 2017:8. https://doi.org/10.1155/2017/9528180

    Article  CAS  Google Scholar 

  • Ozkaleli M, Erdem A (2018) Biotoxicity of TiO2 nanoparticles on Raphidocelis subcapitata microalgae exemplified by membrane deformation. Int J Environ Res Public Health 15:416

    Google Scholar 

  • Pacheco A, Martins A, Guilhermino L (2018) Toxicological interactions induced by chronic exposure to gold nanoparticles and microplastics mixtures in Daphnia magna. Sci Total Environ 628–629:474–483

    Google Scholar 

  • Pagnout C, Jomini S, Dadhwal M, Caillet C, Thomas F, Bauda P (2012) Role of electrostatic interactions in the toxicity of titanium dioxide nanoparticles toward Escherichia coli. Colloids Surf B: Biointerfaces 92:315–321

    CAS  Google Scholar 

  • Pakrashi S, Tan C, Wang WX (2017) Bioaccumulation-based silver nanoparticle toxicity in Daphnia magna and maternal impacts. Environ Toxicol Chem 36:3359–3366

    CAS  Google Scholar 

  • Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347

    CAS  Google Scholar 

  • Park Y, Hong Y, Weyers A, Kim Y, Linhardt R (2011) Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnol 5:69–78

    CAS  Google Scholar 

  • Park S, Woodhall J, Ma G, Veinot JG, Boxall A (2015) Do particle size and surface functionality affect uptake and depuration of gold nanoparticles by aquatic invertebrates? Environ Toxicol Chem 34:850–859

    CAS  Google Scholar 

  • Pelkmans L, Helenius A (2002) Endocytosis via caveolae. Traffic 3:311–320

    CAS  Google Scholar 

  • Peng X, Palma S, Fisher NS, Wong SS (2011) Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquat Toxicol 102:186–196

    CAS  Google Scholar 

  • Peters RJB, van Bemmel G, Milani NBL, Den Hertog GCT, Undas AK, van der Lee M, Bouwmeester H (2018) Detection of nanoparticles in Dutch surface waters. Sci Total Environ 621:210–218

    CAS  Google Scholar 

  • Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV (2007) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 41:284–290

    CAS  Google Scholar 

  • Phenrat T, Saleh N, Sirk K, Kim H-J, Tilton RD, Lowry GV (2008) Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanopart Res 10:795–814

    CAS  Google Scholar 

  • Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14:1–11

    Google Scholar 

  • Pokhrel LR, Dubey B (2012) Potential impact of low-concentration silver nanoparticles on predator–prey interactions between predatory dragonfly nymphs and Daphnia magna as a prey. Environ Sci Technol 46:7755–7762

    CAS  Google Scholar 

  • Poole CP Jr, Owens FJ (2003) Introduction to nanotechnology. Wiley, Hoboken

    Google Scholar 

  • Postma J, Keijzers C (2014) Behavior as response parameter. A literature review on the relevance for population sustainability. Weesp, The Netherlands: Ecofide. Report No. 74

    Google Scholar 

  • Pradhan A, Seena S, Pascoal C, Cássio F (2011) Can metal nanoparticles be a threat to microbial decomposers of plant litter in streams? Microb Ecol 62:58–68

    CAS  Google Scholar 

  • Pu Y, Tang F, Adam P-M, Laratte B, Ionescu RE (2016) Fate and characterization factors of nanoparticles in seventeen subcontinental freshwaters: a case study on copper nanoparticles. Environ Sci Technol 50:9370–9379

    CAS  Google Scholar 

  • Qian H, Zhu K, Lu H, Lavoie M, Chen S, Zhou Z, Deng Z, Chen J, Fu Z (2016) Contrasting silver nanoparticle toxicity and detoxification strategies in Microcystis aeruginosa and Chlorella vulgaris: new insights from proteomic and physiological analyses. Sci Total Environ 572:1213–1221

    CAS  Google Scholar 

  • Qin G, Xiong Y, Tang S, Zhao P, Doering JA, Beitel SC, Hecker M, Wang M, Liu H, Lu H (2015) Impact of predator cues on responses to silver nanoparticles in Daphnia carinata. Arch Environ Contam Toxicol 69:494–505

    CAS  Google Scholar 

  • Qu H, Linder SW, Mudalige TK (2017) Surface coating and matrix effect on the electrophoretic mobility of gold nanoparticles: a capillary electrophoresis-inductively coupled plasma mass spectrometry study. Anal Bioanal Chem 409:979–988

    CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    CAS  Google Scholar 

  • Rainville L-C, Carolan D, Varela AC, Doyle H, Sheehan D (2014) Proteomic evaluation of citrate-coated silver nanoparticles toxicity in Daphnia magna. Analyst 139:1678–1686

    CAS  Google Scholar 

  • Rana S, Kalaichelvan P (2013) Ecotoxicity of nanoparticles. ISRN Toxicol 2013:11

    Google Scholar 

  • Ratti M, Naddeo J, Tan Y, Griepenburg JC, Tomko J, Trout C, O’malley SM, Bubb DM, Klein EA (2016) Irradiation with visible light enhances the antibacterial toxicity of silver nanoparticles produced by laser ablation. Appl Phys A 122:346

    Google Scholar 

  • Reinsch B, Levard C, Li Z, Ma R, Wise A, Gregory K, Brown G Jr, Lowry G (2012) Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition. Environ Sci Technol 46:6992–7000

    CAS  Google Scholar 

  • Ren M, Horn H, Frimmel FH (2017) Aggregation behavior of TiO2 nanoparticles in municipal effluent: Influence of ionic strengthen and organic compounds. Water Res 123:678–686

    CAS  Google Scholar 

  • Renault S, Baudrimont M, Mesmer-Dudons N, Gonzalez P, Mornet S, Brisson A (2008) Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea). Gold Bull 41:116–126

    CAS  Google Scholar 

  • Ribeiro F, Gallego-Urrea JA, Jurkschat K, Crossley A, Hassellöv M, Taylor C, Soares AM, Loureiro S (2014) Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Sci Total Environ 466:232–241

    Google Scholar 

  • Ribeiro F, van Gestel CAM, Pavlaki MD, Azevedo S, Soares AMVM, Loureiro S (2017) Bioaccumulation of silver in Daphnia magna: waterborne and dietary exposure to nanoparticles and dissolved silver. Sci Total Environ 574:1633–1639

    CAS  Google Scholar 

  • Rocha TL, Gomes T, Sousa VS, Mestre NC, Bebianno MJ (2015) Ecotoxicological impact of engineered nanomaterials in bivalve molluscs: an overview. Mar Environ Res 111:74–88

    CAS  Google Scholar 

  • Rocha TL, Mestre NC, Sabóia-Morais SMT, Bebianno MJ (2017) Environmental behaviour and ecotoxicity of quantum dots at various trophic levels: a review. Environ Int 98:1–17

    CAS  Google Scholar 

  • Rodea-Palomares I, Boltes K, Fernández-Piñas F, Leganés F, García-Calvo E, Santiago J, Rosal R (2011) Physicochemical characterization and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms. Toxicol Sci 119:135–145

    CAS  Google Scholar 

  • Rogers NJ, Franklin NM, Apte SC, Batley GE, Angel BM, Lead JR, Baalousha M (2010) Physico-chemical behaviour and algal toxicity of nanoparticulate CeO2 in freshwater. Environ Chem 7:50–60

    CAS  Google Scholar 

  • Rosenfeldt RR, Seitz F, Senn L, Schilde C, Schulz R, Bundschuh M (2015) Nanosized titanium dioxide reduces copper toxicity: the role of organic material and the crystalline phase. Environ Sci Technol 49:1815–1822

    CAS  Google Scholar 

  • Rosenkranz P, Chaudhry Q, Stone V, Fernandes TF (2009) A comparison of nanoparticle and fine particle uptake by Daphnia magna. Environ Toxicol Chem 28:2142–2149

    CAS  Google Scholar 

  • Rüdel H, Muñiz CD, Garelick H, Kandile NG, Miller BW, Munoz LP, Peijnenburg WJ, Purchase D, Shevah Y, van Sprang P (2015) Consideration of the bioavailability of metal/metalloid species in freshwaters: experiences regarding the implementation of biotic ligand model-based approaches in risk assessment frameworks. Environ Sci Pollut Res 22:7405–7421

    Google Scholar 

  • Saei AA, Yazdani M, Lohse SE, Bakhtiary Z, Serpooshan V, Ghavami M, Asadian M, Mashaghi S, Dreaden EC, Mashaghi A, Mahmoudi M (2017) Nanoparticle surface functionality dictates cellular and systemic toxicity. Chem Mater 29:6578–6595

    CAS  Google Scholar 

  • Sakamoto M, Ha J-Y, Yoneshima S, Kataoka C, Tatsuta H, Kashiwada S (2015) Free silver ion as the main cause of acute and chronic toxicity of silver nanoparticles to cladocerans. Arch Environ Contam Toxicol 68:500–509

    CAS  Google Scholar 

  • Sakka Y, Skjolding LM, Mackevica A, Filser J, Baun A (2016) Behavior and chronic toxicity of two differently stabilized silver nanoparticles to Daphnia magna. Aquat Toxicol 177:526–535

    CAS  Google Scholar 

  • Salieri B, Pasteris A, Baumann J, Righi S, Köser J, D’amato R, Mazzesi B, Filser J (2015) Does the exposure mode to ENPs influence their toxicity to aquatic species? A case study with TiO2 nanoparticles and Daphnia magna. Environ Sci Pollut Res 22:5050–5058

    CAS  Google Scholar 

  • Sá-Pereira P, Diniz MS, Moita L, Pinheiro T, Mendonça E, Paixão SM, Picado A (2018) Protein profiling as early detection biomarkers for TiO2 nanoparticle toxicity in Daphnia magna. Ecotoxicology 27:430–439

    Google Scholar 

  • Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL (2013) Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 113:1904–2074

    CAS  Google Scholar 

  • Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD, Tao YJ, Sitharaman B, Wilson LJ, Hughes JB (2004) The differential cytotoxicity of water-soluble fullerenes. Nano Lett 4:1881–1887

    CAS  Google Scholar 

  • Scanlan LD, Reed RB, Loguinov AV, Antczak P, Tagmount A, Aloni S, Nowinski DT, Luong P, Tran C, Karunaratne N (2013) Silver nanowire exposure results in internalization and toxicity to Daphnia magna. ACS Nano 7:10681–10694

    CAS  Google Scholar 

  • SCENIHR (2009) Health effects of exposure to EMF [Online]. http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_022.pdf. Accessed 16 Mar 2018

  • Scott-Fordsmand JJ, Peijnenburg WJ, Semenzin E, Nowack B, Hunt N, Hristozov D, Marcomini A, Irfan MA, Jiménez AS, Landsiedel R (2017) Environmental risk assessment strategy for nanomaterials. Int J Environ Res Public Health 14:1251

    Google Scholar 

  • Scown T, van Aerle R, Tyler C (2010) Review: do engineered nanoparticles pose a significant threat to the aquatic environment? Crit Rev Toxicol 40:653–670

    CAS  Google Scholar 

  • Seitz F, Rosenfeldt RR, Storm K, Metreveli G, Schaumann GE, Schulz R, Bundschuh M (2015) Effects of silver nanoparticle properties, media pH and dissolved organic matter on toxicity to Daphnia magna. Ecotoxicol Environ Saf 111:263–270

    CAS  Google Scholar 

  • Selck H, Handy RD, Fernandes TF, Klaine SJ, Petersen EJ (2016) Nanomaterials in the aquatic environment: an EU-USA perspective on the status of ecotoxicity testing, research priorities and challenges ahead. Environ Toxicol Chem SETAC 35:1055

    CAS  Google Scholar 

  • Sendra M, Moreno-Garrido I, Yeste MP, Gatica JM, Blasco J (2017) Toxicity of TiO2, in nanoparticle or bulk form to freshwater and marine microalgae under visible light and UV-A radiation. Environ Pollut 227:39–48

    CAS  Google Scholar 

  • Seo J, Kim S, Choi S, Kwon D, Yoon T-H, Kim W-K, Park J-W, Jung J (2014) Effects of physiochemical properties of test media on nanoparticle toxicity to Daphnia magna straus. Bull Environ Contam Toxicol 93:257–262

    CAS  Google Scholar 

  • Service RF (2004) Nanotoxicology. Nanotechnology grows up. Science (New York, NY) 304:1732

    CAS  Google Scholar 

  • Shang L, Nienhaus K, Nienhaus GU (2014) Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol 12:1

    Google Scholar 

  • Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M (2012) Toxicity of nanomaterials. Chem Soc Rev 41:2323–2343

    CAS  Google Scholar 

  • Sharma VK, Siskova KM, Zboril R, Gardea-Torresdey JL (2014) Organic-coated silver nanoparticles in biological and environmental conditions: fate, stability and toxicity. Adv Colloid Interf Sci 204:15–34

    CAS  Google Scholar 

  • Sharma VK, Filip J, Zboril R, Varma RS (2015) Natural inorganic nanoparticles – formation, fate, and toxicity in the environment. Chem Soc Rev 44:8410–8423

    CAS  Google Scholar 

  • Shen M-H, Zhou X-X, Yang X-Y, Chao J-B, Liu R, Liu J-F (2015) Exposure medium: key in identifying free Ag+ as the exclusive species of silver nanoparticles with acute toxicity to Daphnia magna. Sci Rep 5:9674

    CAS  Google Scholar 

  • Shukla R, Nune SK, Chanda N, Katti K, Mekapothula S, Kulkarni RR, Welshons WV, Kannan R, Katti KV (2008) Soybeans as a phytochemical reservoir for the production and stabilization of biocompatible gold nanoparticles. Small 4:1425–1436

    CAS  Google Scholar 

  • Silva T, Pokhrel LR, Dubey B, Tolaymat TM, Maier KJ, Liu X (2014) Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: comparison between general linear model-predicted and observed toxicity. Sci Total Environ 468–469:968–976

    Google Scholar 

  • Simon A, Preuss TG, Schäffer A, Hollert H, Maes HM (2015) Population level effects of multiwalled carbon nanotubes in Daphnia magna exposed to pulses of triclocarban. Ecotoxicology 24:1199–1212

    CAS  Google Scholar 

  • Singla M, Kumar M (2009) Optical characterization of ZnO nanoparticles capped with various surfactants. J Lumin 129:434–438

    CAS  Google Scholar 

  • Skjolding LM, Kern K, Hjorth R, Hartmann N, Overgaard S, Ma G, Veinot J, Baun A (2014a) Uptake and depuration of gold nanoparticles in Daphnia magna. Ecotoxicology 23:1172–1183

    CAS  Google Scholar 

  • Skjolding LM, Winther-Nielsen M, Baun A (2014b) Trophic transfer of differently functionalized zinc oxide nanoparticles from crustaceans (Daphnia magna) to zebrafish (Danio rerio). Aquat Toxicol 157:101–108

    CAS  Google Scholar 

  • Skjolding LM, Sørensen SN, Hartmann NB, Hjorth R, Hansen SF, Baun A (2016) Aquatic ecotoxicity testing of nanoparticles – the quest to disclose nanoparticle effects. Angew Chem Int Ed 55:15224–15239

    CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    CAS  Google Scholar 

  • Song JE, Phenrat T, Marinakos S, Xiao Y, Liu J, Wiesner MR, Tilton RD, Lowry GV (2011) Hydrophobic interactions increase attachment of gum arabic-and PVP-coated Ag nanoparticles to hydrophobic surfaces. Environ Sci Technol 45:5988–5995

    CAS  Google Scholar 

  • Sørensen SN, Baun A (2015) Controlling silver nanoparticle exposure in algal toxicity testing – a matter of timing. Nanotoxicology 9:201–209

    Google Scholar 

  • Sørensen SN, Engelbrekt C, Lützhøft H-CH, Jiménez-Lamana J, Noori JS, Alatraktchi FA, Delgado CG, Slaveykova VI, Baun A (2016a) A multimethod approach for investigating algal toxicity of platinum nanoparticles. Environ Sci Technol 50:10635–10643

    Google Scholar 

  • Sørensen SN, Holten Lützhøft H-C, Rasmussen R, Baun A (2016b) Acute and chronic effects from pulse exposure of D. magna to silver and copper oxide nanoparticles. Aquat Toxicol 180:209–217

    Google Scholar 

  • Stanley JK, Laird JG, Kennedy AJ, Steevens JA (2016) Sublethal effects of multiwalled carbon nanotube exposure in the invertebrate Daphnia magna. Environ Toxicol Chem 35:200–204

    Google Scholar 

  • Stevenson LM, Dickson H, Klanjscek T, Keller AA, Mccauley E, Nisbet RM (2013) Environmental feedbacks and engineered nanoparticles: mitigation of silver nanoparticle toxicity to Chlamydomonas reinhardtii by algal-produced organic compounds. PLoS One 8:e74456

    CAS  Google Scholar 

  • Stolpe B, Hassellöv M (2010) Nanofibrils and other colloidal biopolymers binding trace elements in coastal seawater: significance for variations in element size distributions. Limnol Oceanogr 55:187–202

    CAS  Google Scholar 

  • Strigul N, Vaccari L, Galdun C, Wazne M, Liu X, Christodoulatos C, Jasinkiewicz K (2009) Acute toxicity of boron, titanium dioxide, and aluminum nanoparticles to Daphnia magna and Vibrio fischeri. Desalination 248:771–782

    CAS  Google Scholar 

  • Su H-L, Chou C-C, Hung D-J, Lin S-H, Pao IC, Lin J-H, Huang F-L, Dong R-X, Lin J-J (2009) The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials 30:5979–5987

    CAS  Google Scholar 

  • Sun TY, Gottschalk F, Hungerbühler K, Nowack B (2014) Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76

    CAS  Google Scholar 

  • Sun TY, Mitrano DM, Bornhöft NA, Scheringer M, Hungerbühler K, Nowack B (2017) Envisioning nano release dynamics in a changing world: using dynamic probabilistic modeling to assess future environmental emissions of engineered nanomaterials. Environ Sci Technol 51:2854–2863

    CAS  Google Scholar 

  • Tan C, Wang W-X (2014) Modification of metal bioaccumulation and toxicity in Daphnia magna by titanium dioxide nanoparticles. Environ Pollut 186:36–42

    CAS  Google Scholar 

  • Tan C, Wang W-X (2017) Influences of TiO2 nanoparticles on dietary metal uptake in Daphnia magna. Environ Pollut 231:311–318

    CAS  Google Scholar 

  • Tan L-Y, Huang B, Xu S, Wei Z-B, Yang L-Y, Miao A-J (2016a) TiO2 nanoparticle uptake by the water flea Daphnia magna via different routes is calcium-dependent. Environ Sci Technol 50:7799–7807

    CAS  Google Scholar 

  • Tan L-Y, Huang B, Xu S, Wei Z, Yang L, Miao A-J (2016b) Aggregation reverses the carrier effects of TiO2 nanoparticles on cadmium accumulation in the waterflea Daphnia magna. Environ Sci Technol 51:932–939

    Google Scholar 

  • Taylor C, Matzke M, Kroll A, Read DS, Svendsen C, Crossley A (2016a) Toxic interactions of different silver forms with freshwater green algae and cyanobacteria and their effects on mechanistic endpoints and the production of extracellular polymeric substances. Environ Sci Nano 3:396–408

    CAS  Google Scholar 

  • Taylor NS, Merrifield R, Williams TD, Chipman JK, Lead JR, Viant MR (2016b) Molecular toxicity of cerium oxide nanoparticles to the freshwater alga Chlamydomonas reinhardtii is associated with supra-environmental exposure concentrations. Nanotoxicology 10:32–41

    CAS  Google Scholar 

  • Teeguarden JG, Hinderliter PM, Orr G, Thrall BD, Pounds JG (2007) Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci 95:300–312

    CAS  Google Scholar 

  • Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40:6151–6156

    CAS  Google Scholar 

  • Throbäck IN, Johansson M, Rosenquist M, Pell M, Hansson M, Hallin S (2007) Silver (Ag+) reduces denitrification and induces enrichment of novel nirK genotypes in soil. FEMS Microbiol Lett 270:189–194

    Google Scholar 

  • Tiede K, Boxall AB, Tear SP, Lewis J, David H, Hassellöv M (2008) Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam 25:795–821

    CAS  Google Scholar 

  • Tiede K, Hassellöv M, Breitbarth E, Chaudhry Q, Boxall AB (2009) Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. J Chromatogr A 1216:503–509

    CAS  Google Scholar 

  • Tiede K, Hanssen SF, Westerhoff P, Fern GJ, Hankin SM, Aitken RJ, Chaudhry Q, Boxall ABA (2016) How important is drinking water exposure for the risks of engineered nanoparticles to consumers? Nanotoxicology 10:102–110

    CAS  Google Scholar 

  • Tourinho PS, van Gestel CA, Lofts S, Svendsen C, Soares AM, Loureiro S (2012) Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ Toxicol Chem 31:1679–1692

    CAS  Google Scholar 

  • Truong NP, Whittaker MR, Mak CW, Davis TP (2015) The importance of nanoparticle shape in cancer drug delivery. Expert Opin Drug Deliv 12:129–142

    CAS  Google Scholar 

  • Ulm L, Krivohlavek A, Jurašin D, Ljubojević M, Šinko G, Crnković T, Žuntar I, Šikić S, Vinković Vrček I (2015) Response of biochemical biomarkers in the aquatic crustacean Daphnia magna exposed to silver nanoparticles. Environ Sci Pollut Res 22:19990–19999

    CAS  Google Scholar 

  • Vale G, Mehennaoui K, Cambier S, Libralato G, Jomini S, Domingos RF (2016) Manufactured nanoparticles in the aquatic environment-biochemical responses on freshwater organisms: a critical overview. Aquat Toxicol 170:162–174

    CAS  Google Scholar 

  • Vance ME, Kuiken T, Vejerano EP, Mcginnis SP, Hochella MF Jr, Rejeski D, Hull MS (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780

    CAS  Google Scholar 

  • Venkatesan AK, Reed RB, Lee S, Bi X, Hanigan D, Yang Y, Ranville JF, Herckes P, Westerhoff P (2018) Detection and sizing of Ti-containing particles in recreational waters using single particle ICP-MS. Bull Environ Contam Toxicol 100:120–126

    CAS  Google Scholar 

  • Vidmar J, Milačič R, Ščančar J (2017) Sizing and simultaneous quantification of nanoscale titanium dioxide and a dissolved titanium form by single particle inductively coupled plasma mass spectrometry. Microchem J 132:391–400

    CAS  Google Scholar 

  • Vijayakumar S, Malaikozhundan B, Gobi N, Vaseeharan B, Murthy C (2016) Protective effects of chitosan against the hazardous effects of zinc oxide nanoparticle in freshwater crustaceans Ceriodaphnia cornuta and Moina micrura. Limnol Ecol Manag Inland Waters 61:44–51

    CAS  Google Scholar 

  • von Moos N, Slaveykova VI (2014) Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae – state of the art and knowledge gaps. Nanotoxicology 8:605–630

    Google Scholar 

  • von Moos N, Bowen P, Slaveykova VI (2014) Bioavailability of inorganic nanoparticles to planktonic bacteria and aquatic microalgae in freshwater. Environ Sci Nano 1:214–232

    Google Scholar 

  • von Moos N, Maillard L, Slaveykova VI (2015) Dynamics of sub-lethal effects of nano-CuO on the microalga Chlamydomonas reinhardtii during short-term exposure. Aquat Toxicol 161:267–275

    Google Scholar 

  • Wagner S, Gondikas A, Neubauer E, Hofmann T, Kammer F (2014) Spot the difference: engineered and natural nanoparticles in the environment-release, behavior, and fate. Angew Chem Int Ed 53:12398–12419

    CAS  Google Scholar 

  • Wang D, Chen Y (2016) Critical review of the influences of nanoparticles on biological wastewater treatment and sludge digestion. Crit Rev Biotechnol 36:816–828

    CAS  Google Scholar 

  • Wang C, Wei Z, Feng M, Wang L, Wang Z (2014) The effects of hydroxylated multiwalled carbon nanotubes on the toxicity of nickel to Daphnia magna under different pH levels. Environ Toxicol Chem 33:2522–2528

    CAS  Google Scholar 

  • Wang L-F, Habibul N, He D-Q, Li W-W, Zhang X, Jiang H, Yu H-Q (2015) Copper release from copper nanoparticles in the presence of natural organic matter. Water Res 68:12–23

    CAS  Google Scholar 

  • Wang D, Lin Z, Wang T, Yao Z, Qin M, Zheng S, Lu W (2016a) Where does the toxicity of metal oxide nanoparticles come from: the nanoparticles, the ions, or a combination of both? J Hazard Mater 308:328–334

    CAS  Google Scholar 

  • Wang S, Lv J, Ma J, Zhang S (2016b) Cellular internalization and intracellular biotransformation of silver nanoparticles in Chlamydomonas reinhardtii. Nanotoxicology 10:1129–1135

    Google Scholar 

  • Wang Z, Zhang L, Zhao J, Xing B (2016c) Environmental processes and toxicity of metallic nanoparticles in aquatic systems as affected by natural organic matter. Environ Sci Nano 3:240–255

    Google Scholar 

  • Wang X, Cheng E, Burnett IS, Huang Y, Wlodkowic D (2017) Automatic multiple zebrafish larvae tracking in unconstrained microscopic video conditions. Sci Rep 7:17596

    Google Scholar 

  • Wang X, Fan W, Dong Z, Liang D, Zhou T (2018) Interactions of natural organic matter on the surface of PVP-capped silver nanoparticle under different aqueous environment. Water Res 138:224–233

    CAS  Google Scholar 

  • Warheit DB (2004) Nanoparticles: health impacts? Mater Today 7:32–35

    CAS  Google Scholar 

  • Warheit D (2018) Hazard and risk assessment strategies for nanoparticle exposures: how far have we come in the past 10 years? F1000Res 7:376. https://doi.org/10.12688/f1000research.12691.1. [version 1; referees: 2 approved]

    Article  Google Scholar 

  • Wasmuth C, Rüdel H, Düring R-A, Klawonn T (2016) Assessing the suitability of the OECD 29 guidance document to investigate the transformation and dissolution of silver nanoparticles in aqueous media. Chemosphere 144:2018–2023

    CAS  Google Scholar 

  • Weis JS, Candelmo A (2012) Pollutants and fish predator/prey behavior: a review of laboratory and field approaches. Curr Zool 58:9–20

    Google Scholar 

  • Werlin R, Priester JH, Mielke RE, Krämer S, Jackson S, Stoimenov PK, Stucky GD, Cherr GN, Orias E, Holden PA (2011) Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain. Nat Nanotechnol 6:65–71

    CAS  Google Scholar 

  • Wiench K, Wohlleben W, Hisgen V, Radke K, Salinas E, Zok S, Landsiedel R (2009) Acute and chronic effects of nano-and non-nano-scale TiO2 and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna. Chemosphere 76:1356–1365

    CAS  Google Scholar 

  • Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40:4336–4345

    CAS  Google Scholar 

  • Wray AT, Klaine SJ (2015) Modeling the influence of physicochemical properties on gold nanoparticle uptake and elimination by Daphnia magna. Environ Toxicol Chem 34:860–872

    CAS  Google Scholar 

  • Wu F, Bortvedt A, Harper BJ, Crandon LE, Harper SL (2017a) Uptake and toxicity of CuO nanoparticles to Daphnia magna varies between indirect dietary and direct waterborne exposures. Aquat Toxicol 190:78–86

    CAS  Google Scholar 

  • Wu Y-S, Huang S-L, Chung H-C, Nan F-H (2017b) Bioaccumulation of lead and non-specific immune responses in white shrimp (Litopenaeus vannamei) to Pb exposure. Fish Shellfish Immunol 62:116–123

    CAS  Google Scholar 

  • Xiao Y, Vijver MG, Chen G, Peijnenburg WJ (2015) Toxicity and accumulation of Cu and ZnO nanoparticles in Daphnia magna. Environ Sci Technol 49:4657–4664

    CAS  Google Scholar 

  • Xiao Y, Peijnenburg WJ, Chen G, Vijver MG (2018) Impact of water chemistry on the particle-specific toxicity of copper nanoparticles to Daphnia magna. Sci Total Environ 610:1329–1335

    Google Scholar 

  • Xiu Z-M, Ma J, Alvarez PJ (2011) Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol 45:9003–9008

    CAS  Google Scholar 

  • Xiu Z-M, Zhang Q-B, Puppala HL, Colvin VL, Alvarez PJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12:4271–4275

    CAS  Google Scholar 

  • Yameen B, Choi WI, Vilos C, Swami A, Shi J, Farokhzad OC (2014) Insight into nanoparticle cellular uptake and intracellular targeting. J Control Release 190:485–499

    CAS  Google Scholar 

  • Yang Y, Long C-L, Li H-P, Wang Q, Yang Z-G (2016) Analysis of silver and gold nanoparticles in environmental water using single particle-inductively coupled plasma-mass spectrometry. Sci Total Environ 563–564:996–1007

    Google Scholar 

  • Yeardley RB, Gast LC, Lazorchak JM (1996) The potential of an earthworm avoidance test for evaluation of hazardous waste sites. Environ Toxicol Chem 15:1532–1537

    CAS  Google Scholar 

  • Yin L, Cheng Y, Espinasse B, Colman BP, Auffan M, Wiesner M, Rose J, Liu J, Bernhardt ES (2011) More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45:2360–2367

    CAS  Google Scholar 

  • Yu S-J, Yin Y-G, Liu J-F (2013) Silver nanoparticles in the environment. Environ Sci: Processes Impacts 15:78–92

    Google Scholar 

  • Yu Z, Hao R, Zhang L, Zhu Y (2018) Effects of TiO2, SiO2, Ag and CdTe/CdS quantum dots nanoparticles on toxicity of cadmium towards Chlamydomonas reinhardtii. Ecotoxicol Environ Saf 156:75–86

    CAS  Google Scholar 

  • Yue Y, Li X, Sigg L, Suter MJ, Pillai S, Behra R, Schirmer K (2017) Interaction of silver nanoparticles with algae and fish cells: a side by side comparison. J Nanobiotechnol 15:16

    Google Scholar 

  • Zhang L, Li J, Yang K, Liu J, Lin D (2016a) Physicochemical transformation and algal toxicity of engineered nanoparticles in surface water samples. Environ Pollut 211:132–140

    CAS  Google Scholar 

  • Zhang Y-Q, Dringen R, Petters C, Rastedt W, Köser J, Filser J, Stolte S (2016b) Toxicity of dimercaptosuccinate-coated and un-functionalized magnetic iron oxide nanoparticles towards aquatic organisms. Environ Sci Nano 3:754–767

    CAS  Google Scholar 

  • Zhang S, Deng R, Lin D, Wu F (2017) Distinct toxic interactions of TiO2 nanoparticles with four coexisting organochlorine contaminants on algae. Nanotoxicology 11:1115–1126

    CAS  Google Scholar 

  • Zhao CM, Wang WX (2011) Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna. Environ Toxicol Chem 30:885–892

    CAS  Google Scholar 

  • Zhao C-M, Wang W-X (2012a) Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna. Nanotoxicology 6:361–370

    CAS  Google Scholar 

  • Zhao C-M, Wang W-X (2012b) Size-dependent uptake of silver nanoparticles in Daphnia magna. Environ Sci Technol 46:11345–11351

    CAS  Google Scholar 

  • Zhao J, Cao X, Liu X, Wang Z, Zhang C, White JC, Xing B (2016) Interactions of CuO nanoparticles with the algae Chlorella pyrenoidosa: adhesion, uptake, and toxicity. Nanotoxicology 10:1297–1305

    CAS  Google Scholar 

  • Zhou K, Hu Y, Zhang L, Yang K, Lin D (2016) The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae. Sci Rep 6:32998

    CAS  Google Scholar 

  • Zhu X, Zhu L, Chen Y, Tian S (2009) Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna. J Nanopart Res 11:67–75

    CAS  Google Scholar 

  • Zhu X, Chang Y, Chen Y (2010a) Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 78:209–215

    CAS  Google Scholar 

  • Zhu X, Wang J, Zhang X, Chang Y, Chen Y (2010b) Trophic transfer of TiO2 nanoparticles from Daphnia to zebrafish in a simplified freshwater food chain. Chemosphere 79:928–933

    CAS  Google Scholar 

Download references

Acknowledgements

This material is based upon work which was supported by the Australian Government to Sam Lekamge through an “Australian Government Research Training Program Scholarship”. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Australian Government.

Conflicts of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Lekamge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lekamge, S., Ball, A.S., Shukla, R., Nugegoda, D. (2018). The Toxicity of Nanoparticles to Organisms in Freshwater. In: de Voogt, P. (eds) Reviews of Environmental Contamination and Toxicology Volume 248. Reviews of Environmental Contamination and Toxicology, vol 248. Springer, Cham. https://doi.org/10.1007/398_2018_18

Download citation

Publish with us

Policies and ethics