Advertisement

Oxidative Stress and Heavy Metals in Plants

  • Radka Fryzova
  • Miroslav Pohanka
  • Pavla Martinkova
  • Hana Cihlarova
  • Martin Brtnicky
  • Jan Hladky
  • Jindrich Kynicky
Chapter
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 245)

Abstract

Oxidative stress is a pathological process related to not only animal kingdom but also plants. Regarding oxidative stress in plants, heavy metals are frequently discussed as causative stimuli with relevance to ecology. Because heavy metals have broad technological importance, they can easily contaminate the environment. Much of previous effort regarding the harmful impact of the heavy metals was given to their toxicology in the animals and humans. Their implication in plant pathogeneses is less known and remains underestimated.

The current paper summarizes basic facts about heavy metals, their distribution in soil, mobility, accumulation by plants, and initiation of oxidative stress including the decline in basal metabolism. The both actual and frontier studies in the field are summarized and discussed. The major pathophysiological pathways are introduced as well and link between heavy metals toxicity and their ability to initiate an oxidative damage is provided. Mobility and bioaccessibility of the metals is also considered as key factors in their impact on oxidative stress development in the plant. The metals like lead, mercury, copper, cadmium, iron, zinc, nickel, vanadium are depicted in the text.

Heavy metals appear to be significant contributors to pathological processes in the plants and oxidative stress is probably an important contributor to the effect. The most sensitive plant species are enlisted and discussed in this review. The facts presented here outline next effort to investigate pathological processes in the plants.

Keywords

Contamination Heavy metals Oxidative damage Oxidative stress Pathophysiological pathways Plants 

Notes

Acknowledgments

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic under the CEITEC 2020 (LQ1601) and NAZV QJ1320122 projects. We thank all reviewers for their constructive reviews of this manuscript, and Prof. Pim de Voogt for editorial comments that led to improvements of the manuscript.

References

  1. Abdennacer B, Karim M, Yassine M, Nesrine R, Mouna D, Mohamed B (2015) Determination of phytochemicals and antioxidant activity of methanol extracts obtained from the fruit and leaves of Tunisian Lycium intricatum Boiss. Food Chem 174:577–584.  https://doi.org/10.1016/j.foodchem.2014.11.114 CrossRefGoogle Scholar
  2. Adrees M, Ali S, Iqbal M et al (2015) Mannitol alleviates chromium toxicity in wheat plants in relation to growth, yield, stimulation of anti-oxidative enzymes, oxidative stress and Cr uptake in sand and soil media. Ecotox Environ Safe 122:1–8.  https://doi.org/10.1016/j.ecoenv.2015.07.003 CrossRefGoogle Scholar
  3. Agrawal B, Czymmek KJ, Sparks DL, Bais HP (2013) Transient influx of nickel in root mitochondria modulates organic acid and reactive oxygen species production in nickel hyperaccumulator Alyssum murale. J Biol Chem 288(10):7351–7362.  https://doi.org/10.1074/jbc.M112.406645 CrossRefGoogle Scholar
  4. Ahmad R, Tehsin Z, Malik ST et al (2016) Phytoremediation potential of hemp (Cannabis sativa L.): identification and characterization of heavy metals responsive genes. Clean-Soil Air Water 44(2):195–201.  https://doi.org/10.1002/clen.201500117 CrossRefGoogle Scholar
  5. Alaoui-Sossé B, Genet P, Vinit-Dunand F, Toussaint ML, Epron D, Badot PM (2004) Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationships with carbohydrate accumulation and changes in ion contents. Plant Sci 166:1213–1218.  https://doi.org/10.1016/j.plantsci.2003.12.032 CrossRefGoogle Scholar
  6. Al-Rimawi F (2015) Development and validation of a simple reversed-phase HPLC-UV method for determination of malondialdehyde in olive oil. J Am Oil Chem Soc 92(7):933–937.  https://doi.org/10.1007/s11746-015-2664-x CrossRefGoogle Scholar
  7. Amor Y, Haigle CH, Johnson S, Wainscott M, Delmer DP (1995) A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc Natl Acad Sci U S A 92(20):9353–9357.  https://doi.org/10.1073/pnas.92.20.9353 CrossRefGoogle Scholar
  8. Anjum NA, Hasanuzzaman M, Hossain MA et al (2015) Jacks of metal/metalloid chelation trade in plants-an overview. Front Plant Sci 6(192):1–17.  https://doi.org/10.3389/fpls.2015.00192 Google Scholar
  9. Antosiewicz DM, Barabasz A, Siemianowski O (2014) Phenotypic and molecular consequences of overexpression of metal-homeostasis genes. Front Plant Sci 5(80):1–7.  https://doi.org/10.3389/fpls.2014.00080 Google Scholar
  10. Assunção AGL, Schat H, Aarts MGM (2003) Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol 159(2):351–360.  https://doi.org/10.1046/j.1469-8137.2003.00820.x CrossRefGoogle Scholar
  11. Barman SC, Sahu RK, Bhargava SK, Chaterjee C (2000) Distribution of heavy metals in wheat, mustard, and weed grown in field irrigated with industrial effluents. Bull Environ Contam Toxicol 64(4):489–496.  https://doi.org/10.1007/s001280000030 CrossRefGoogle Scholar
  12. Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manage 105:103–120.  https://doi.org/10.1016/j.jenvman.2012.04.002 CrossRefGoogle Scholar
  13. Brown RM Jr, Saxena IM, Kudlicka K (1996) Cellulose biosynthesis in higher plants. Trends Plant Sci 1:149–156. doi:  https://doi.org/10.1016/S1360-1385(96)80050-1
  14. Brunner I, Luster J, Günthardt-Goerg MS, Frey B (2008) Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. Environ Pollut 152(3):559–568.  https://doi.org/10.1016/j.envpol.2007.07.006 CrossRefGoogle Scholar
  15. Chettri MK, Cook CM, Vardaka E, Sawidis T, Lanaras T (1998) The effect of Cu, Zn and Pb on the chlorophyll content of the lichens Cladonia convoluta and Cladonia rangiformis. Environ Exp Bot 39(1):1–10.  https://doi.org/10.1016/S0098-8472(97)00024-5 CrossRefGoogle Scholar
  16. Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88(11):1707–1719.  https://doi.org/10.1016/j.biochi.2006.07.003 CrossRefGoogle Scholar
  17. Cobbet C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Physiol 53:159–182.  https://doi.org/10.1146/annurev.arplant.53.100301.135154 Google Scholar
  18. Colzi I, Doumett S, Del Bubba M et al (2011) On the role of the cell wall in the phenomenon of copper tolerance in Silene paradoxa L. Environ Exp Bot 72:77–83.  https://doi.org/10.1016/j.envexpbot.2010.02.006 CrossRefGoogle Scholar
  19. Cui LJ, Huang Q, Yan B et al (2015) Molecular cloning and expression analysis of a Cu/Zn SOD gene (BcCSD1) from Brassica campestris ssp chinensis. Food Chem 186:306–311.  https://doi.org/10.1016/j.foodchem.2014.07.121 CrossRefGoogle Scholar
  20. Cumino A, Curatti L, Giarrocco L, Salerno GL (2002) Sucrose metabolism: anabaena sucrose-phosphate synthase and sucrose-phosphate phosphatase define minimal functional domains shuffled during evolution. FEBS Lett 517(1–3):19–23.  https://doi.org/10.1016/S0014-5793(02)02516-4 CrossRefGoogle Scholar
  21. Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98(1):29–36.  https://doi.org/10.1016/S0269-7491(97)00110-3 CrossRefGoogle Scholar
  22. De Abreu-Neto JB, Turchetto-Zolet AC, De Oliveira LF, Zanettini MH, Margis-Pinheiro M (2013) Heavy metal-associated isoprenylated plant protein (HIPP): characterization of a family of proteins exclusive to plants. FEBS J 280(7):1604–1616.  https://doi.org/10.1111/febs.12159 CrossRefGoogle Scholar
  23. De Matos AT, Fontes MPF, Da Costa LM, Martinez MA (2001) Mobility of heavy metals as related to soil chemical and mineralogical characteristics of Brazilian soils. Environ Pollut 111(3):429–435.  https://doi.org/10.1016/S0269-7491(00)00088-9 CrossRefGoogle Scholar
  24. Debbaudt AL, Ferreira ML, Gschaider ME (2004) Theoretical and experimental study of M2+ adsorption on biopolymers. III. Comparative kinetic pattern of Pb, Hg and Cd. Carbohydr Polym 56(3):321–332.  https://doi.org/10.1016/j.carbpol.2004.02.009 CrossRefGoogle Scholar
  25. Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212–228.  https://doi.org/10.1016/j.envexpbot.2014.06.021 CrossRefGoogle Scholar
  26. Dimkpa CHO, Merten D, Svatos A, Büchel G, Kothe E (2009) Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41(1):154–162.  https://doi.org/10.1016/j.soilbio.2008.10.010 CrossRefGoogle Scholar
  27. Duffus JH (2002) “Heavy metals” a meaningless term? IUPAC Tech Rep Pure Appl Chem 74(5):793–807.  https://doi.org/10.1351/pac200274050793 Google Scholar
  28. Duffus JH (2003) Errata “heavy metals” a meaningless term? IUPAC Tech Rep Pure Appl Chem 75(9):1357.  https://doi.org/10.1351/pac200375091357 Google Scholar
  29. El-Hawary SA, Sokkar NM, Ali ZY, Yehia MM (2011) A profile of bioactive compounds of Rumex vesicarius L. J Food Sci 76(8):1195–1202.  https://doi.org/10.1111/j.1750-3841.2011.02370.x CrossRefGoogle Scholar
  30. Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015:1–18.  https://doi.org/10.1155/2015/756120 CrossRefGoogle Scholar
  31. Ettler V, Kribek B, Majer V, Knesl I, Mihaljevic M (2012) Differences in the bioaccessibility of metals/metalloids in soils from mining and smelting areas (Copperbelt, Zambia). J Geochem Explor 113:68–75.  https://doi.org/10.1016/j.gexplo.2011.08.001 CrossRefGoogle Scholar
  32. Farahat E, Linderholm HW (2015) The effect of long-term wastewater irrigation on accumulation and transfer of heavy metals in Cupressus sempervirens leaves and adjacent soils. Sci Total Environ 512–513:1–7.  https://doi.org/10.1016/j.scitotenv.2015.01.032 CrossRefGoogle Scholar
  33. Fargasova A (2004) Toxicity comparison of some possible toxic metals (Cd, Cu, Pb, Se, Zn) on young seedlings of Sinapis alba L. Plant Soil Environ 50(1):33–38CrossRefGoogle Scholar
  34. Fernandez LR, Vandenbussche G, Roosens N, Govaerts C, Goormaghtigh E, Verbruggen N (2012) Metal binding properties and structure of a type III metallothionein from the metal hyperaccumulator plant Noccaea caerulescens. Biochim Biophys Acta 1824(9):1016–1023.  https://doi.org/10.1016/j.bbapap.2012.05.010 CrossRefGoogle Scholar
  35. Flouty R, Khalaf G (2015) Role of Cu and Pb on Ni bioaccumulation by Chlamydomonas reinhardtii: validation of the biotic ligand model in binary metal mixtures. Ecotox Environ Safe 113:79–86.  https://doi.org/10.1016/j.ecoenv.2014.11.022 CrossRefGoogle Scholar
  36. Franco CR, Chagas AP, Jorge RA (2004) Ion-exchange equilibria with aluminum pectinates. Colloid Surf A 204(1–3):183–192.  https://doi.org/10.1016/S0927-7757(01)01134-7 Google Scholar
  37. Freeman JL, Garcia D, Kim D, Hopf A, Salt DE (2005) Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiol 137(3):1082–1091.  https://doi.org/10.1104/pp.104.055293 CrossRefGoogle Scholar
  38. Freeman JL, Tamaoki M, Stushnoff C et al (2010) Molecular mechanisms of selenium tolerance and hyperaccumulation in Stanleya pinnata. Plant Physiol 153(4):1630–1652.  https://doi.org/10.1104/pp.110.156570 CrossRefGoogle Scholar
  39. Gajewska E, Głowacki R, Mazur J, Skłodowska M (2013) Differential response of wheat roots to Cu, Ni and Cd treatment: oxidative stress and defense reactions. Plant Growth Regul 71(1):13–20.  https://doi.org/10.1007/s10725-013-9803-x CrossRefGoogle Scholar
  40. Galfati I, Bilal E, Sassi AB, Abdallah H, Zaier A (2011) Accumulation of heavy metals in native plants growing near the phosphate treatment industry, Tunisia. Carpath J Earth Env 6(2):85–100Google Scholar
  41. Garcia L, Welchen E, Gonzalez DH (2014) Mitochondria and copper homeostasis in plants. Mitochondrion 19:269–274.  https://doi.org/10.1016/j.mito.2014.02.011 CrossRefGoogle Scholar
  42. Gedik CM, Boyle SP, Wood SG, Vaughan NJ, Collins AR (2002) Oxidative stress in humans: validation of biomarkers of DNA damage. Carcinogenesis 23(9):1441–1446.  https://doi.org/10.1093/carcin/23.9.1441 CrossRefGoogle Scholar
  43. Gendre D, Czernic P, Conéjéro G et al (2006) TcYSL3, a member of the YSL gene family from the hyperaccumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter. Plant J 49(1):1–15.  https://doi.org/10.1111/j.1365-313X.2006.02937.x CrossRefGoogle Scholar
  44. Guo WJ, Meetam M, Goldsbrough PB (2008) Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol 146:1697–1706.  https://doi.org/10.1104/pp.108.115782 CrossRefGoogle Scholar
  45. Guo X, Meng H, Zhu S, Zhang T, Yu S (2015) Purifying sugar beet pectins from non-pectic components by means of metal precipitation. Food Hydrocoll 51:69–75.  https://doi.org/10.1016/j.foodhyd.2015.05.009 CrossRefGoogle Scholar
  46. Gupta AK, Ahmad M (2013) Effect of refinery waste effluent on tocopherol, carotenoid, phenolics and other antioxidants content in Allium cepa. Toxicol Ind Health 29(7):652–661.  https://doi.org/10.1177/0748233712436639 CrossRefGoogle Scholar
  47. He F, Liu Q, Zheng L, Cui Y, Shen Z, Zheng L (2015) RNA-Seq analysis of rice roots reveals the involvement of post-transcriptional regulation in response to cadmium stress. Front Plant Sci 6(1136):1–16.  https://doi.org/10.3389/fpls.2015.01136 Google Scholar
  48. Hechmi N, Ben Aissa N, Abdenaceur H, Jedidi N (2015) Uptake and bioaccumulation of pentachlorophenol by emergent wetland plant Phragmites australis (common reed) in cadmium co-contaminated soil. Int J Phytoremediation 17:109–116.  https://doi.org/10.1080/15226514.2013.851169 CrossRefGoogle Scholar
  49. Hédiji H, Djebali W, Cabasson C et al (2010) Effects of long-term cadmium exposure on growth and metabolomic profile of tomato plants. Ecotox Environ Safe 73(8):1965–1974.  https://doi.org/10.1016/j.ecoenv.2010.08.014 CrossRefGoogle Scholar
  50. Hieu HC, Li H, Miyauchi Y, Mizutani G, Fujita N, Nakamura Y (2015) Wetting effect on optical sum frequency generation (SFG) spectra of D-glucose, D-fructose, and sucrose. Spectrochim Acta A Mol Biomol Spectrosc 138:834–839.  https://doi.org/10.1016/j.saa.2014.10.108 CrossRefGoogle Scholar
  51. Hossain Z, Komatsu S (2013) Contribution of proteomic studies towards understanding plant heavy metal stress response. Front Plant Sci 3(310):1–12.  https://doi.org/10.3389/fpls.2012.00310 Google Scholar
  52. Hu Y, Wang T, Yang X, Zhao Y (2014) Analysis of compositional monosaccharides in fungus polysaccharidesby capillary zone electrophoresis. Carbohydr Polym 102:481–488.  https://doi.org/10.1016/j.carbpol.2013.11.054 CrossRefGoogle Scholar
  53. Isaacson T, Damasceno CMB, Saravanan RS et al (2006) Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat Protoc 1(2):769–774.  https://doi.org/10.1038/nprot.2006.102 CrossRefGoogle Scholar
  54. Jain R, Chandra A, Venugopalan VK, Solomon S (2015) Physiological changes and expression of SOD and P5CS genes in response to water deficit in sugarcane. Sugar Tech 17(3):276–282.  https://doi.org/10.1007/s12355-014-0317-2 CrossRefGoogle Scholar
  55. John R, Ahmad P, Gadgil K, Sharma S (2008) Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L. Plant Soil Environ 54(6):262–270CrossRefGoogle Scholar
  56. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283(2–3):65–87.  https://doi.org/10.1016/j.tox.2011.03.001 CrossRefGoogle Scholar
  57. Juknys R, Vitkauskaité G, Račaité M, Vencloviené J (2012) The impacts of heavy metals on oxidative stress and growth of spring barley. Cent Eur J Biol 7(2):299–306.  https://doi.org/10.2478/s11535-012-0012-9 Google Scholar
  58. Kalubi KN, Mehes-Smith M, Omri A (2016) Comparative analysis of metal translocation in red maple (Acer rubrum) and trembling aspen (Populus tremuloides) populations from stressed ecosystems contaminated with metals. Chem Ecol 32(4):312–323.  https://doi.org/10.1080/02757540.2016.1142978 CrossRefGoogle Scholar
  59. Kartel MT, Kupchik LA, Veisov BK (1999) Evaluation of pectin binding of heavy metal ions in aqueous solutions. Chemosphere 38(11):2591–2596.  https://doi.org/10.1016/S0045-6535(98)00466-4 CrossRefGoogle Scholar
  60. Kim RY, Yoon JK, Kim TS, Yang JE, Owns G, Kim KR (2015) Bioavailability of heavy metals in soils: definitions and practical implementation—a critical review. Environ Geochem Health 37(6):1041–1061.  https://doi.org/10.1007/s10653-015-9695-y CrossRefGoogle Scholar
  61. Kirkham MB (2006) Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation, and amendments. Geoderma 137(1):19–32.  https://doi.org/10.1016/j.geoderma.2006.08.024 CrossRefGoogle Scholar
  62. Knasmüller S, Gottmann E, Steinkellner H et al (1998) Detection of genotoxic effects of heavy metal contaminated soils with plant bioassays. Mutat Res 420(1–3):37–48.  https://doi.org/10.1016/S1383-5718(98)00145-4 CrossRefGoogle Scholar
  63. Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7(3):235–246.  https://doi.org/10.1016/j.pbi.2004.03.014 CrossRefGoogle Scholar
  64. Krämer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581(12):2263–2272.  https://doi.org/10.1016/j.febslet.2007.04.010 CrossRefGoogle Scholar
  65. Kudlicka K, Brown RM Jr (1997) Cellulose and Callose biosynthesis in higher plants. Plant Physiol 115(2):643–656.  https://doi.org/10.1104/pp.115.2.643 CrossRefGoogle Scholar
  66. Kumar N, Bauddh K, Kumar S, Dwivedi N, Singh DP, Barman SC (2013) Accumulation of metals in weed species grown on the soil contaminated with industrial waste and their phytoremediation potential. Ecol Eng 61:491–495.  https://doi.org/10.1016/j.ecoleng.2013.10.004 CrossRefGoogle Scholar
  67. Kurd F, Samavati V (2015) Water soluble polysaccharides from Spirulina platensis: extraction and in vitro anti-cancer activity. Int J Biol Macromol 74:498–506.  https://doi.org/10.1016/j.ijbiomac.2015.01.005 CrossRefGoogle Scholar
  68. Li E, AC W, Li J, Liu Q, Gilbert RG (2015a) Improved understanding of rice amylose biosynthesis from advanced starch structural characterization. Rice 8(20):1–8.  https://doi.org/10.1186/s12284-015-0055-4 Google Scholar
  69. Li ZM, Yu Y, Li ZL (2015b) A review of biosensing techniques for detection of trace carcinogen contamination in food products. Anal Bioanal Chem 407(10):2711–2726.  https://doi.org/10.1007/s00216-015-8530-8 CrossRefGoogle Scholar
  70. Liang HM, Lin TH, Chiou JM, Yeh KC (2009) Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators. Environ Pollut 157(6):1945–1952.  https://doi.org/10.1016/j.envpol.2008.11.052 CrossRefGoogle Scholar
  71. Lin YF, Severing EI, Te Lintel Hekkert B, Schijlen E, Aarts MGM (2014) A comprehensive set of transcript sequences of the heavy metal hyperaccumulator Noccaea caerulescens. Front Plant Sci 5(261):1–15.  https://doi.org/10.3389/fpls.2014.00261 Google Scholar
  72. Lou Y, Yang Y, Hu L, Liu H, Xu Q (2015) Exogenous glycinebetaine alleviates the detrimental effect of Cd stress on perennial ryegrass. Ecotoxicology 24(6):1330–1340.  https://doi.org/10.1007/s10646-015-1508-7 CrossRefGoogle Scholar
  73. Luque-Garcia JL, Cabezas-Sanchez P, Camara C (2011) Proteomics as a tool for examining the toxicity of heavy metals. Trends Anal Chem 30(5):703–716.  https://doi.org/10.1016/j.trac.2011.01.014 CrossRefGoogle Scholar
  74. Lv Y, Deng X, Quan L, Xia Y, Shen Z (2013) Metallothioneins BcMT1 and BcMT2 from Brassica campestris enhance tolerance to cadmium and copper and decrease production of reactive oxygen species in Arabidopsis thaliana. Plant and Soil 367(1–2):507–519.  https://doi.org/10.1007/s11104-012-1486-y CrossRefGoogle Scholar
  75. Ma JF (2005) Plant root responses to three abundant soil minerals: silicon, aluminum and iron. Crit Rev Plant Sci 24(4):267–281.  https://doi.org/10.1080/07352680500196017 CrossRefGoogle Scholar
  76. Markiewicz B, Komorowicz I, Belter M, Baralkiewicz D (2015) Chromium and its speciation in water samples by HPLC/ICP-MS—technique establishing metrological traceability: a review since 2000. Talanta 132:814–828.  https://doi.org/10.1016/j.talanta.2014.10.002 CrossRefGoogle Scholar
  77. Mata YN, Blázquez ML, Ballester A, González F, Muñoz JA (2009) Sugar-beet pulp pectin gels as biosorbent for heavy metals: preparation and determination of biosorption and desorption characteristics. Chem Eng J 150(2–3):289–301.  https://doi.org/10.1016/j.cej.2009.01.001 CrossRefGoogle Scholar
  78. Mehes-Smith M, Nkongolo KK, Narendrula R, Cholewa E (2013a) Mobility of heavy metals in plants and soil: a case study from a mining region in Canada. Am J Environ Sci 9(6):483–493.  https://doi.org/10.3844/ajessp.2013.483.493 CrossRefGoogle Scholar
  79. Mehes-Smith M, Nkongolo KK, Cholewa E (2013b) Coping mechanisms of plants to metal contaminated soil. In: Silvern S, Young S (eds) Environmental change and sustainability. Chapter 3, pp 53–90. InTech. ISBN: 978-953-51-1094-1. doi:  https://doi.org/10.5772/55124
  80. Mejáre M, Bülow L (2001) Metal binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19(2):67–73.  https://doi.org/10.1016/S0167-7799(00)01534-1 CrossRefGoogle Scholar
  81. Mera R, Torres E, Abalde J (2016) Influence of sulphate on the reduction of cadmium toxicity in the microalga Chlamydomonas moewusii. Ecotox Environ Safe 128:236–245.  https://doi.org/10.1016/j.ecoenv.2016.02.030 CrossRefGoogle Scholar
  82. Mesjasz-Przybyłowicz J, Barnabas A, Przybyłowicz W (2007) Comparison of cytology and distribution of nickel in roots of Ni-hyperaccumulating and non-hyperaccumulating genotypes of Senecio coronatus. Plant and Soil 293:61–78.  https://doi.org/10.1007/s11104-007-9237-1 CrossRefGoogle Scholar
  83. Mganga N, Manoko MLK, Rulangaranga ZK (2011) Classification of plants according to their heavy metal content around North Mara gold mine, Tanzania: implication for phytoremediation. Tanz J Sci 37:109–119Google Scholar
  84. Mihoub A, Chaoui A, El Ferjani E (2005) Biochemical changes associated with cadmium and copper stress in germinating pea seeds (Pisum sativum L.) C R Biol 328(1):33–41.  https://doi.org/10.1016/j.crvi.2004.10.003 CrossRefGoogle Scholar
  85. Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29(6):645–653.  https://doi.org/10.1016/j.biotechadv.2011.04.006 CrossRefGoogle Scholar
  86. Moya JL, Ros R, Picazo I (1993) Influence of cadmium and nickel on growth, photosynthesis and carbohydrate distribution in rice plants. Photosynth Res 36(2):75–80.  https://doi.org/10.1007/BF00016271 CrossRefGoogle Scholar
  87. Muller AL, Oliveira JS, Mello PA, Muller EI, Flores EM (2015) Study and determination of elemental impurities by ICP-MS in active pharmaceutical ingredients using single reaction chamber digestion in compliance with USP requirements. Talanta 136:161–169.  https://doi.org/10.1016/j.talanta.2014.12.023 CrossRefGoogle Scholar
  88. Mussatto SI, Mancilha IM (2007) Non-digestible oligosaccharides: a review. Carbohydr Polym 68(3):587–597.  https://doi.org/10.1016/j.carbpol.2006.12.011 CrossRefGoogle Scholar
  89. Myers AM, Morell MK, James MG, Ball SG (2000) Recent progress toward understanding biosynthesis of the amylopectin crystal. Plant Physiol 122:989–997.  https://doi.org/10.1104/pp.122.4.989 CrossRefGoogle Scholar
  90. Nahar K, Hasanuzzaman M, Alam MM, Fujita M (2015) Exogenous glutathione confers high temperature stress tolerance in mung bean (Vigna radiata L.) by modulating antioxidant defense and methylglyoxal detoxification system. Environ Exp Bot 112:44–54.  https://doi.org/10.1016/j.envexpbot.2014.12.001 CrossRefGoogle Scholar
  91. Naz FS, Yusuf M, Khan TA, Fariduddin Q, Ahmad A (2015) Low level of selenium increases the efficacy of 24-epibrassinolide through altered physiological and biochemical traits of Brassica juncea plants. Food Chem 185:441–448.  https://doi.org/10.1016/j.foodchem.2015.04.016 CrossRefGoogle Scholar
  92. Ostrouchov G, Chen W-C, Schmidt D, Patel P (2012) Programming with big data in R. http://r-pbd.org/
  93. Park W, Feng Y, Ahn SJ (2014) Alteration of leaf shape, improved metal tolerance, and productivity of seed by overexpression of CsHMA3 in Camelina sativa. Biotechnol Biofuels 7(96):1–17.  https://doi.org/10.1186/1754-6834-7-96 Google Scholar
  94. Perrin RM (2001) Cellulose: how many cellulose synthases to make a plant? Curr Biol 11(6):213–216.  https://doi.org/10.1016/S0960-9822(01)00108-7 CrossRefGoogle Scholar
  95. Pohanka M (2013) Role of oxidative stress in infectious diseases. A review. Folia Microbiol 58(6):503–513.  https://doi.org/10.1007/s12223-013-0239-5 CrossRefGoogle Scholar
  96. Pohanka M (2014a) Alzheimer’s disease and oxidative stress. A review. Curr Med Chem 21(3):356–364.  https://doi.org/10.2174/09298673113206660258 CrossRefGoogle Scholar
  97. Pohanka M (2014b) Copper, aluminum, iron and calcium inhibit human acetylcholinesterase in vitro. Environ Toxicol Pharmacol 37(1):455–459.  https://doi.org/10.1016/j.etap.2014.01.001 CrossRefGoogle Scholar
  98. Pohanka M (2014c) Caffeine alters oxidative homeostasis in the body of BALB/c mice. Bratisl Med J 115(11):699–703.  https://doi.org/10.4149/BLL_2014_135 CrossRefGoogle Scholar
  99. Puls RW, Powell RM, Clark D, Eldred CJ (1991) Effects of pH, solid/solution ratio, ionic strength and organic acids on Pb and Cd sorption on kaolinite. Water Air Soil Pollut 57–58(1):423–430.  https://doi.org/10.1007/BF00282905 CrossRefGoogle Scholar
  100. Rady MM, Hemida KA (2015) Modulation of cadmium toxicity and enhancing cadmium-tolerance in wheat seedlings by exogenous application of polyamines. Ecotoxic Environ Safe 119:178–185.  https://doi.org/10.1016/j.ecoenv.2015.05.008 CrossRefGoogle Scholar
  101. Rahoui S, Chaoui A, El Ferjani E (2008) Differential sensitivity to cadmium in germinating seeds of three cultivars of faba bean (Vicia faba L.) Acta Physiol Plant 30(4):451–456.  https://doi.org/10.1007/s11738-008-0142-x CrossRefGoogle Scholar
  102. Rahoui S, Chaoui A, El Ferjani E (2010) Reserve mobilization disorder in germinating seeds of Vicia faba exposed to cadmium. J Plant Nutr 33(5–8):809–817.  https://doi.org/10.1080/01904161003654055 CrossRefGoogle Scholar
  103. Rahoui S, Chaoui A, Ben C, Rickauer M, Gentzbittel L, El Ferjani E (2015) Effect of cadmium pollution on mobilization of embryo reserves in seedlings of six contrasted Medicago truncatula lines. Phytochemistry 111:98–106.  https://doi.org/10.1016/j.phytochem.2014.12.002 CrossRefGoogle Scholar
  104. Ramirez-Anaya Jdel P, Samaniego-Sanchez C, Castañeda-Saucedo MC, Villalon-Mir M, López-García de la Serrana H (2015) Phenols and the antioxidant capacity of Mediterranean vegetables prepared with extra virgin olive oil using different domestic cooking techniques. Food Chem 188:430–438.  https://doi.org/10.1016/j.foodchem.2015.04.124 CrossRefGoogle Scholar
  105. Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180(2):169–181.  https://doi.org/10.1016/j.plantsci.2010.08.016 CrossRefGoogle Scholar
  106. Rees F, Germain C, Sterckeman T, Morel JL (2015) Plant growth and metal uptake by a non-hyperaccumulating species (Lolium perenne) and a Cd-Zn hyperaccumulator (Noccaea caerulescens) in contaminated soils amended with biochar. Plant Soil 395(1–2):57–73.  https://doi.org/10.1007/s11104-015-2384-x CrossRefGoogle Scholar
  107. Reiter WD (2002) Biosynthesis and properties of the plant cell wall. Curr Opin Plant Biol 5(6):536–542.  https://doi.org/10.1016/S1369-5266(02)00306-0 CrossRefGoogle Scholar
  108. Reiter WD, Vanzin GF (2001) Molecular genetics of nucleotide sugar interconversion pathways in plants. Plant Mol Biol 47(1–2):95–113.  https://doi.org/10.1007/s11104-015-2384-x CrossRefGoogle Scholar
  109. Rencher AC (2002) Methods of multivariate analysis. Wiley series in probability and mathematical statistics. Wiley, Hoboken, NJGoogle Scholar
  110. Ricachenevsky FK, Menguer PK, Sperotto RA, Williams LE, Fett JP (2013) Roles of plant metal tolerance proteins (MTP) in metal storage and potential use in biofortification strategies. Front Plant Sci 4(144):1–16.  https://doi.org/10.3389/fpls.2013.00144 Google Scholar
  111. Rorabaugh JM, Stratford JM, Zahniser NR (2015) Differences in bingeing behavior and cocaine reward following intermittent access to sucrose, glucose or fructose solutions. Neuroscience 301:213–220.  https://doi.org/10.1016/j.neuroscience.2015.06.015 CrossRefGoogle Scholar
  112. Sainger PA, Dhankhar R, Sainger M, Kaushik A, Singh RP (2011) Assessment of heavy metal tolerance in native plant species from soils contaminated with electroplating effluent. Ecotox Environ Safe 74(8):2284–2291.  https://doi.org/10.1016/j.ecoenv.2011.07.028 CrossRefGoogle Scholar
  113. Salerno GL, Curatti L (2003) Origin of sucrose metabolism in higher plants: when, how and why? Trends Plant Sci 8(2):63–69.  https://doi.org/10.1016/S1360-1385(02)00029-8 CrossRefGoogle Scholar
  114. Samsel M, Dzierzbicka K, Trzonkowski P (2013) Adenosine, its analogues and conjugates. Postepy Hig Med Dosw 67:1189–1203.  https://doi.org/10.5604/17322693.1078588 CrossRefGoogle Scholar
  115. Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4(2):118–138.  https://doi.org/10.3923/jest.2011.118.138 CrossRefGoogle Scholar
  116. Schützendübel A, Polle A (2001) Plant responses to abiotic stresses: heavy metal induced oxidative stress and protection by mycorrhization. J Exp Bot 53(372):1351–1365.  https://doi.org/10.1093/jexbot/53.372.1351 Google Scholar
  117. Seth CS, Remans T, Keunen E et al (2012) Phytoextraction of toxic metals: a central role for glutathione. Plant Cell Environ 35(2):334–346.  https://doi.org/10.1111/j.1365-3040.2011.02338.x CrossRefGoogle Scholar
  118. Sethy SK, Ghosh S (2013) Effect of heavy metals on germination of seeds. J Nat Sci Biol Med 4(2):272–275.  https://doi.org/10.4103/0976-9668.116964 CrossRefGoogle Scholar
  119. Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14(1):43–50.  https://doi.org/10.1016/j.tplants.2008.10.007 CrossRefGoogle Scholar
  120. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26.  https://doi.org/10.1155/2012/217037 CrossRefGoogle Scholar
  121. Siemianowski O, Barabasz A, Kendziorek M et al (2014) HMA4 expression in tobacco reduces Cd accumulation due to the induction of the apoplastic barrier. J Exp Bot 65(4):1125–1139.  https://doi.org/10.1093/jxb/ert471 CrossRefGoogle Scholar
  122. Singh OV, Labana S, Pandey G, Budhiraja R (2003) Phytoremediation: an overview of metallic ion decontamination from soil. Appl Microbiol Biotechnol 61(5–6):405–412.  https://doi.org/10.1007/s00253-003-1244-4 CrossRefGoogle Scholar
  123. Slewinski TL, Braun DM (2010) Current perspectives on the regulation of whole-plant carbohydrate partitioning. Plant Sci 178(4):341–349.  https://doi.org/10.1016/j.plantsci.2010.01.010 CrossRefGoogle Scholar
  124. Solanki R, Dhankhar R (2011) Biochemical changes and adaptive strategies of plants under heavy metal stress. Biologia 66(2):195–204.  https://doi.org/10.2478/s11756-011-0005-6 CrossRefGoogle Scholar
  125. Stankovic S, Kalaba P, Stankovic AR (2014) Biota as toxic metal indicators. Environ Chem Lett 12(1):63–84.  https://doi.org/10.1007/s10311-013-0430-6 CrossRefGoogle Scholar
  126. Sun X, Zhang J, Zhang H et al (2010) The responses of Arabidopsis thaliana to cadmium exposure explored via metabolite profiling. Chemosphere 78(7):840–845.  https://doi.org/10.1016/j.chemosphere.2009.11.045 CrossRefGoogle Scholar
  127. Tamoi M, Nagaoka M, Miyagawa Y, Shigeoka S (2006) Contribution of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase to the photosynthetic rate and carbon flow in the Calvin cycle in transgenic plants. Plant Cell Physiol 47(3):380–390.  https://doi.org/10.1093/pcp/pcj004 CrossRefGoogle Scholar
  128. Topolska J, Latowski D, Kaschabek S, Manecki M, Merkel BJ, Rakovan J (2014) Pb remobilization by bacterially mediated dissolution of pyromorphite Pb5(PO4)3Cl in presence of phosphate-solubilizing Pseudomonas putida. Environ Sci Pollut R 21(2):1079–1089.  https://doi.org/10.1007/s11356-013-1968-3 CrossRefGoogle Scholar
  129. Ugulu I (2015) Determination of heavy metal accumulation in plant samples by spectrometric techniques in Turkey. Appl Spectrosc Rev 50(2):113–151.  https://doi.org/10.1080/05704928.2014.935981 CrossRefGoogle Scholar
  130. Van Bussel CGJ, Schroeder JP, Mahlmann L, Schulz C (2014) Aquatic accumulation of dietary metals (Fe, Zn, Cu, Co, Mn) in recirculating aquaculture systems (RAS) changes body composition but not performance and health of fuvenile turbot (Psetta maxima). Aquacult Eng 61:35–42.  https://doi.org/10.1016/j.aquaeng.2014.05.003 CrossRefGoogle Scholar
  131. Vatamaniuk OK, Bucher EA, Ward JT, Rea PA (2001) A new pathway for heavy metal detoxification in animals. Phytochelatin synthase is required for cadmium tolerance in Caenorhabditis elegans. J Biol Chem 276:20817–20820.  https://doi.org/10.1074/jbc.C100152200 CrossRefGoogle Scholar
  132. Velisek J, Cejpek K (2005a) Biosynthesis of food constituents: saccharides. 1. Monosaccharides, oligosaccharides, and related compounds—a review. Czech J Food Sci 23(4):129–144CrossRefGoogle Scholar
  133. Velisek J, Cejpek K (2005b) Biosynthesis of food constituents: saccharides. 2. Polysaccharides—a review. Czech J Food Sci 23(5):173–183CrossRefGoogle Scholar
  134. Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181(4):759–776.  https://doi.org/10.1111/j.1469-8137.2008.02748.x CrossRefGoogle Scholar
  135. Verret F, Gravot A, Auroy P et al (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 576(3):306–312.  https://doi.org/10.1016/j.febslet.2004.09.023 CrossRefGoogle Scholar
  136. Violante A, Cozzolino V, Perelomov L, Caporale AG, Pigna M (2010) Mobility and bioavailability of heavy metals and metalloids in soil environments. J Soil Sci Plant Nutr 10(3):268–292.  https://doi.org/10.4067/S0718-95162010000100005 CrossRefGoogle Scholar
  137. Visioli G, Marmiroli M, Marmiroli N (2010) Two-dimensional liquid chromatography technique coupled with mass spectrometry analysis to compare the proteomic response to cadmium stress in plants. J Biomed Biotechnol 2010:1–10.  https://doi.org/10.1155/2010/567510 CrossRefGoogle Scholar
  138. Visioli G, D’Egidio S, Vamerali T, Mattarozzi M, Sanangelantoni AM (2014) Culturable endophytic bacteria enhance Ni translocation in the hyperaccumulator Noccaea caerulescens. Chemosphere 117:538–544.  https://doi.org/10.1016/j.chemosphere.2014.09.014 CrossRefGoogle Scholar
  139. Wang T, Sun H (2013) Biosorption of heavy metals from aqueous solution by UV-mutant Bacillus subtilis. Environ Sci Pollut R 20(10):7450–7463.  https://doi.org/10.1007/s11356-013-1767-x CrossRefGoogle Scholar
  140. Wang C, Hua D, Yan C (2015) Structural characterization and antioxidant activities of a novel fructan from Achyranthes bidentata Blume, a famous medicinal plant in China. Ind Crop Prod 70:427–434.  https://doi.org/10.1016/j.indcrop.2015.03.051 CrossRefGoogle Scholar
  141. Wasserman LA, Sergeev AI, Vasil’ev VG et al (2015) Thermodynamic and structural properties of tuber starches from transgenic potato plants grown in vitro and in vivo. Carbohydr Polym 125:214–223.  https://doi.org/10.1016/j.carbpol.2015.01.084 CrossRefGoogle Scholar
  142. Wei JL, Lai HY, Chen ZS (2012) Chelator effects on bioconcentration and translocation of cadmium by hyperaccumulators, Tagetes patula and Impatiens walleriana. Ecotox Environ Safe 84:173–178.  https://doi.org/10.1016/j.ecoenv.2012.07.004 CrossRefGoogle Scholar
  143. Wingler A (2002) The function of trehalose biosynthesis in plants. Phytochemistry 60(5):437–440.  https://doi.org/10.1016/S0031-9422(02)00137-1 CrossRefGoogle Scholar
  144. Winter H, Huber SC (2000) Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. Crit Rev Biochem Mol Biol 35(4):253–289.  https://doi.org/10.1080/10409230008984165 CrossRefGoogle Scholar
  145. Yang L, Chen JH, Xu T, Zhou AS, Yang HK (2012) Rice protein improves oxidative stress by regulating glutathione metabolism and attenuating oxidative damage to lipids and proteins in rats. Life Sci 91(11–12):389–394.  https://doi.org/10.1016/j.lfs.2012.08.003 CrossRefGoogle Scholar
  146. Zaimoglu Z, Koksal N, Basci N, Kesici M, Gulen H, Budak F (2011) Antioxidative enzyme activities in Brassica juncea L. and Brassica oleracea L. plants under chromium stress. J Food Agric Environ 9(1):676–679Google Scholar
  147. Zenk MH (1996) Heavy metal detoxification in higher plants—a review. Gene 179(1):21–30.  https://doi.org/10.1016/S0378-1119(96)00422-2 CrossRefGoogle Scholar
  148. Zhai R, Su S, Lu X et al (2005) Proteomic profiling in the sera of workers occupationally exposed to arsenic and lead: identification of potential biomarkers. Biometals 18(6):603–613.  https://doi.org/10.1007/s10534-005-3001-x CrossRefGoogle Scholar
  149. Zhang M, Senoura T, Yang X, Nishizawa NK (2011) Functional analysis of metal tolerance proteins isolated from Zn/Cd hyperaccumulating ecotype and non-hyperaccumulating ecotype of Sedum alfredii Hance. FEBS Lett 585(16):2604–2609.  https://doi.org/10.1016/j.febslet.2011.07.013 CrossRefGoogle Scholar
  150. Zhang S, Cui Y, Li L et al (2015) Preparative HSCCC isolation of phloroglucinolysis products from grape seed polymeric proanthocyanidins as new powerful antioxidants. Food Chem 188:422–429.  https://doi.org/10.1016/j.foodchem.2015.05.030 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Radka Fryzova
    • 1
    • 2
  • Miroslav Pohanka
    • 1
    • 3
  • Pavla Martinkova
    • 2
    • 3
  • Hana Cihlarova
    • 1
  • Martin Brtnicky
    • 1
    • 2
  • Jan Hladky
    • 1
    • 2
  • Jindrich Kynicky
    • 1
    • 2
  1. 1.Department of Geology and Pedology, Faculty of Forestry and Wood TechnologyMendel University in BrnoBrnoCzech Republic
  2. 2.Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic
  3. 3.Faculty of Military Health SciencesUniversity of DefenceHradec KraloveCzech Republic

Personalised recommendations