Skip to main content

A Global Overview of Exposure Levels and Biological Effects of Trace Elements in Penguins

  • Chapter
  • First Online:

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 245))

Abstract

Trace elements are chemical contaminants that can be present almost anywhere on the planet. The study of trace elements in biotic matrices is a topic of great relevance for the implications that it can have on wildlife and human health. Penguins are very useful, since they live exclusively in the Southern Hemisphere and represent about 90% of the biomass of birds of the Southern Ocean. The levels of trace elements (dry weight) in different biotic matrices of penguins were reviewed here. Maps of trace element records in penguins were included. Data on exposure and effects of trace elements in penguins were collected from the literature. The most reported trace elements in penguins are aluminum, arsenic, cadmium, lead, mercury, copper, zinc, and manganese. Trace elements have been measured in 11 of the 18 species of penguins. The most studied biotic matrices are feathers and excreta. Most of the studies have been performed in Antarctica and subantarctic Islands. Little is known about the interaction among metals, which could provide better knowledge about certain mechanisms of detoxification in penguins. Future studies of trace elements in penguins must incorporate other metals such as vanadium, cobalt, nickel, and chromium. Data of metals in the species such as Eudyptes pachyrhynchus, Eudyptes moseleyi, Eudyptes sclateri, Eudyptes robustus, Eudyptes schlegeli, Spheniscus demersus, Spheniscus mendiculus, and Megadyptes antipodes are urged. It is important to correlate levels of metals in different biotic matrices with the effects on different species and in different geographic locations.

This is a preview of subscription content, log in via an institution.

References

  • Agusa T, Matsumoto T, Ikemoto T, Anan Y, Kubota R, Yasunaga G, Kunito T, Tanabe S, Ogi H, Shibata Y (2005) Body distribution of trace elements in black-tailed gulls from Rishiri island, Japan: age-dependent accumulation and transfer to feathers and eggs. Environ Toxicol Chem 24:2107–2120

    Article  CAS  Google Scholar 

  • Anan Y, Kunito T, Watanabe I, Sakai H, Tanabe S (2001) Trace element accumulation in hawksbill turtle (Eretmochelys imbricata) and green turtle (Chelonia mydas) from Yaeyama Islands, Japan. Environ Toxicol Chem 20:2802–2814

    Article  CAS  Google Scholar 

  • Ancora S, Volpi V, Olmastroni S, Focardi S, Leonzio C (2002) Assumption and elimination of trace elements in Adélie penguins from Antarctica: a preliminary study. Mar Environ Res 54:341–344

    Article  CAS  Google Scholar 

  • Arcos JM, Ruiz X, Bearhop S, Furness RW (2002) Mercury levels in seabirds and their fish prey at the Ebro Delta (NW Mediterranean): the role of trawler discards as a source of contamination. Mar Ecol Prog Ser 232:281–290

    Article  CAS  Google Scholar 

  • ATSDR (2004) Toxicological profile for copper. Agency for Toxic Substances and Disease Registry US Department of Health and Human Services, Public Health Service, Atlanta, GA. http://www.atsdr.cdc.gov/ToxProfiles/tp132.pdf. Accessed 19 May 2016

  • ATSDR (2007) Toxicological profile for arsenic. Agency for Toxic Substances and Disease Registry US Department of Health and Human Services, Public Health Service, Atlanta, GA. http://www.atsdr.cdc.gov/toxprofiles/tp2.pdf. Accessed 19 May 2016

  • ATSDR (2008) Toxicological profile for manganese. Agency for Toxic Substances and Disease Registry US Department of Health and Human Services, Public Health Service, Atlanta, GA. http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=102&tid=23. Accessed 19 May 2016

  • Ballatori N (2002) Transport of toxic metals by molecular mimicry. Environ Health Perspect 110:689–694

    Article  CAS  Google Scholar 

  • Barbieri E, de Andrade PE, Filippini A, Souza dos Santos I, Borges CA (2010) Assessment of trace metal concentration in feathers of seabird (Larus dominicanus) sampled in the Florianópolis, SC, Brazilian coast. Environ Monit Assess 169:631–638

    Article  CAS  Google Scholar 

  • Barbosa A, De Mas E, Benzal J, Diaz J, Motas M, Jerez S, Pertierra L, Benayas J, Justel A, Lauzurica P, Garcia-Peña F, Serrano T (2013) Pollution and physiological variability in gentoo penguins at two rookeries with different levels of human visitation. Antarct Sci 25:329–338

    Article  Google Scholar 

  • Bargagli R (2001) Trace metals in Antarctic organisms and the development of circumpolar biomonitoring networks. Rev Environ Contam Toxicol 171:53–110

    Article  CAS  Google Scholar 

  • Bargagli R (2008) Environmental contamination in Antarctic ecosystems. Sci Total Environ 400:212–226

    Article  CAS  Google Scholar 

  • Bargagli R, Monaci F, SÃnchez-HernÃndez J, Cateni D (1998) Biomagnification of mercury in an Antarctic marine coastal food web. Mar Ecol Prog Ser 169:65–76

    Article  CAS  Google Scholar 

  • Barjaktarovic L, Elliott JE, Scheuhammer AM (2002) Metal and metallothionein concentrations in scoter (Melanitta spp.) from the Pacific northwest of Canada, 1989–1994. Arch Environ Contam Toxicol 43:486–491

    Article  CAS  Google Scholar 

  • Becker PH, GonzÃlez-Solís J, Behrends B, Croxall J (2002) Feather mercury levels in seabirds at South Georgia: influence of trophic position, sex and age. Mar Ecol Prog Ser 243:261–269

    Article  CAS  Google Scholar 

  • Beyer WN, Heinz GH, Redmon-Norwood AW (1996) Environmental contaminants in wildlife: interpreting tissue concentrations. Lewis, Boca Raton, FL, p 512

    Google Scholar 

  • Beyer NW, Spalding M, Morrison D (1997) Mercury concentrations in feathers of wading birds from Florida. Ambio 26:97–100

    Google Scholar 

  • Beyer WN, Franson JC, Locke LN, Stroud RK, Sileo L (1998) Retrospective study of the diagnostic criteria in a lead-poisoning survey of waterfowl. Arch Environ Contam Toxicol 35:506–512

    Article  CAS  Google Scholar 

  • Boersma PD (2008) Penguins as marine sentinels. Bioscience 58:597–607

    Article  Google Scholar 

  • Brasso RL, Polito MJ (2013) Trophic calculations reveal the mechanism of population-level variation in mercury concentrations between marine ecosystems: case studies of two polar seabirds. Mar Pollut Bull 75:244–249

    Article  CAS  Google Scholar 

  • Brasso RL, Polito MJ, Emslie SD (2014) Multi-tissue analyses reveal limited inter-annual and seasonal variation in mercury exposure in an Antarctic penguin community. Ecotoxicology 23:1494–1504

    Article  CAS  Google Scholar 

  • Braune BM, Gaston AJ, Hobson KA, Gilchrist HG, Mallory ML (2014) Changes in food web structure alter trends of mercury uptake at two seabird colonies in the Canadian Arctic. Environ Sci Technol 48:13246–13252

    Article  CAS  Google Scholar 

  • Bryan GW, Langston WJ (1992) Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environ Pollut 76:89–131

    Article  CAS  Google Scholar 

  • Burger J (2008) Assessment and management of risk to wildlife from cadmium. Sci Total Environ 389:37–45

    Article  CAS  Google Scholar 

  • Burger J, Gochfeld M (1997) Risk, mercury levels, and birds: relating adverse laboratory effects to field biomonitoring. Environ Res 75:160–172

    Article  CAS  Google Scholar 

  • Burger J, Gochfeld M (2000a) Effects of lead on birds (Laridae): a review of laboratory and field studies. J Toxicol Environ Health B Crit Rev 3:59–78

    Article  CAS  Google Scholar 

  • Burger J, Gochfeld M (2000b) Metal levels in feathers of 12 species of seabirds from midway atoll in the northern Pacific Ocean. Sci Total Environ 257:37–52

    Article  CAS  Google Scholar 

  • Burger J, Gochfeld M, Sullivan K, Irons D, McKnight A (2008) Arsenic, cadmium, chromium, lead, manganese, mercury, and selenium in feathers of black-legged kittiwake (Rissa tridactyla) and black oystercatcher (Haematopus bachmani) from Prince William sound, Alaska. Sci Total Environ 398:20–25

    Article  CAS  Google Scholar 

  • Burger J, Tsipoura N, Newhouse M, Jeitner C, Gochfeld M, Mizrahi D (2011) Lead, mercury, cadmium, chromium, and arsenic levels in eggs, feathers, and tissues of Canada geese of the New Jersey meadowlands. Environ Res 111:775–784

    Article  CAS  Google Scholar 

  • Bustamante P, Bocher P, Cherel Y, Miramand P, Caurant F (2003) Distribution of trace elements in the tissues of benthic and pelagic fish from the Kerguelen Islands. Sci Total Environ 313:25–39

    Article  CAS  Google Scholar 

  • Byrns MC, Penning TM (2011) Environmental toxicology. Carcinogens and heavy metals. In: Brunton L, Chabner B, Knollman B (eds) The pharmacological basis of therapeutics. McGraw Hill, New York, pp 1853–1878

    Google Scholar 

  • Calle P, Alvarado O, Monserrate L, Cevallos JM, Calle N, Alava JJ (2015) Mercury accumulation in sediments and seabird feathers from the Antarctic peninsula. Mar Pollut Bull 91:410–417

    Article  CAS  Google Scholar 

  • Campbell LM, Norstrom RJ, Hobson KA, Muir D, Backus S, Fisk AT (2005) Mercury and other trace elements in a pelagic Arctic marine food web (Northwater polynya, Baffin Bay). Sci Total Environ 351-352:247–263

    Article  CAS  Google Scholar 

  • Carlini AR, Coria NR, Santos MM, Negrete J, Juares MA, Daneri GA (2009) Responses of Pygoscelis adeliae and P. papua populations to environmental changes at Isla 25 de Mayo (king George Island). Polar Biol 32:1427–1433

    Article  Google Scholar 

  • Carravieri A, Bustamante P, Churlaud C, Cherel Y (2013) Penguins as bioindicators of mercury contamination in the Southern Ocean: birds from the Kerguelen Islands as a case study. Sci Total Environ 454-455:141–148

    Article  CAS  Google Scholar 

  • Carravieri A, Bustamante P, Churlaud C, Fromant A, Cherel Y (2014) Moulting patterns drive within-individual variations of stable isotopes and mercury in seabird body feathers: implications for monitoring of the marine environment. Mar Biol 161:963–968

    Article  CAS  Google Scholar 

  • Carravieri A, Cherel Y, Jaeger A, Churlaud C (2016) Penguins as bioindicators of mercury contamination in the southern Indian Ocean: geographical and temporal tends. Environ Pollut 213:195–205

    Article  CAS  Google Scholar 

  • Casini S, Fossi M, Gavilan J, Barra R, Parra O, Leonzio C, Focardi S (2001) Porphyrin levels in excreta of seabirds of the Chilean coasts as nondestructive biomarker of exposure to environmental pollutants. Arch Environ Contam Toxicol 4:65–72

    Article  CAS  Google Scholar 

  • Casini S, Fossi M, Leonzio C, Renzoni A (2003) Review: porphyrins as biomarkers for hazard assessment of bird populations: destructive and non-destructive use. Ecotoxicology 12:297–305

    Article  CAS  Google Scholar 

  • Celis J, Jara S, GonzÃlez-Acuña D, Barra R, Espejo W (2012) A preliminary study of trace metals and porphyrins in excreta of gentoo penguins (Pygoscelis papua) at two locations of the Antarctic peninsula. Arch Med Vet 44:311–316

    Article  CAS  Google Scholar 

  • Celis JE, Espejo W, GonzÃlez-Acuña D, Jara S, Barra R (2014) Assessment of trace metals and porphyrins in excreta of Humboldt penguins (Spheniscus humboldti) in different locations of the northern coast of Chile. Environ Monit Assess 186:1815–1824

    Article  CAS  Google Scholar 

  • Celis JE, Espejo W, Barra R, Gonzalez-Acuña D, Gonzalez F, Jara S (2015a) Assessment of trace metals in droppings of Adélie penguins (Pygoscelis adeliae) from different locations of the Antarctic peninsula area. Adv Polar Sci 26:1–7

    Google Scholar 

  • Celis JE, Barra R, Espejo W, GonzÃlez-Acuña D, Jara S (2015b) Trace element concentrations in biotic matrices of gentoo penguins (Pygoscelis papua) and coastal soils from different locations of the Antarctic peninsula. Water Air Soil Pollut 226:1–12

    Article  CAS  Google Scholar 

  • Chen CY, Serrell N, Evers DC, Fleishman BJ, Lambert KF, Weiss J, Mason RP, Bank MS (2008) Meeting report: methylmercury in marine ecosystems—from sources to seafood consumers. Environ Health Perspect 116:1706–1712

    Article  CAS  Google Scholar 

  • Cifuentes JM, Becker PH, Sommer U, Pacheco P, Schlatter R (2003) Seabird eggs as bioindicators of chemical contamination in Chile. Environ Pollut 126:123–137

    Article  CAS  Google Scholar 

  • Clarke KR, Somerfield PJ, Chapman MG (2006) On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted bray–Curtis coefficient for denuded assemblages. J Exp Mar Biol Ecol 330:55–80

    Article  Google Scholar 

  • Cooper J, Crawford RJM, De Villiers M, Dyer BM, Hofmeyr GJG, Jonker A (2009) Disease outbreaks among penguins at sub-Antarctic Marion Island: a conservation concern. Mar Ornithol 37:193–196

    Google Scholar 

  • Croxall JP, Prince PA, Reid K (1997) Dietary segregation of krill eating South Georgia seabirds. J Zool 242:531–556

    Article  Google Scholar 

  • Custer T, Custer C, Eichhorst B, Warburton D (2007) Selenium and metal concentrations in waterbird eggs and chicks at Agassiz National Wildlife Refuge, Minnesota. Arch Environ Contam Toxicol 53:103–109

    Article  CAS  Google Scholar 

  • Daso AP, Okonkwo JO, Jansen R, Brandao JD, Kotzé A (2015) Mercury concentrations in eggshells of the southern ground-hornbill (Bucorvus leadbeateri) and Wattled crane (Bugeranus carunculatus) in South Africa. Ecotoxicol Environ Saf 114:61–66

    Article  CAS  Google Scholar 

  • Dauwe T, Bervoets L, Blust R, Pinxten R, Eens M (2000) Can excrement and feathers of nestling songbirds be used as biomonitors for heavy metal pollution? Arch Environ Contam Toxicol 39:541–546

    Article  CAS  Google Scholar 

  • Dauwe T, Janssens E, Bervoets L, Blust R, Eens M (2005) Heavy-metal concentrations in female laying great tits (Parus major) and their clutches. Arch Environ Contam Toxicol 49:249–256

    Article  CAS  Google Scholar 

  • De Matos R (2008) Calcium metabolism in birds. Vet Clin Exot Anim 11:59–82

    Article  Google Scholar 

  • De Matteis F, Lim CK (1994) Porphyrins as nondestructive indicators of exposure to environmental pollutants. In: Fossi MC, Leoncio C (eds) Nondestructive biomarkers in vertebrates. Lewis, Boca Raton, FL, pp 93–128

    Google Scholar 

  • De Moreno JEA, Gerpe MS, Moreno VJ, Vodopivez C (1997) Heavy metals in Antarctic organisms. Polar Biol 17:131–140

    Article  Google Scholar 

  • Debacker V, Jauniaux T, Coignoul F, Bouquegneau JM (2000) Heavy metals contamination and body condition of wintering guillemots (Uria Aalge) at the Belgian coast from 1993 to 1998. Environ Res 84(3):310–317

    Article  CAS  Google Scholar 

  • Deheyn DD, Gendreau P, Baldwin RJ, Latz MI (2005) Evidence for enhanced bioavailability of trace elements in the marine ecosystem of Deception Island, a volcano in Antarctica. Mar Environ Res 60:1–33

    Article  CAS  Google Scholar 

  • Dehn L, Follmann E, Thomas D, Sheffield G, Rosa C, Duffy L, O'Hara T (2006) Trophic relationships in an Arctic food web and implications for trace metal transfer. Sci Total Environ 362:103–123

    Article  CAS  Google Scholar 

  • Del Hoyo J, Elliott A, Sargatal J (1992) Handbook of the birds of the world. Volume 1: ostrich to ducks. Lynx Edicions. Barcelona, Spain, p 696

    Google Scholar 

  • Dos Santos IR, Silva-Filho EV, Schaefer CE, Albuquerque-Filho MR, Campos LS (2005) Heavy metal contamination in coastal sediments and soils near the Brazilian Antarctic Station, king George Island. Mar Pollut Bull 50:185–194

    Article  CAS  Google Scholar 

  • Eisler R (1985) Selenium hazards to fish, wildlife and invertebrates. A synoptic review. U.S. Fish and Wildlife Service, Washington DC. https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=7297. Accessed 31 May 2016

  • Eisler R (1987) Mercury hazards to fish, wildlife, and invertebrates: a synoptic review. U.S. Fish and WildlifeService, Washington DC. https://www.pwrc.usgs.gov/eisler/CHR_10_Mercury.pdf

  • Eisler R (1988) Lead hazards to fish, wildlife, and invertebrates. A synoptic review. U.S. Fish and Wildlife Service, Washington DC. https://www.pwrc.usgs.gov/eisler/CHR_14_Lead.pdf. Accessed 31 May 2016

  • Eisler R (1993) Zinc hazards to fish, wildlife and invertebrates. A synoptic review. U.S. Fish and Wildlife Service, Washington DC. https://www.pwrc.usgs.gov/eisler/CHR_26_Zinc.pdf. Accessed 31 May 2016

  • Eisler R (1998) Copper hazards to fish, wildlife, and invertebrates. A synoptic review. U.S. Fish and Wildlife Service, Washington DC. https://www.pwrc.usgs.gov/eisler/CHR_33_Copper.pdf. Accessed 31 May 2016

  • Elliot JE, Scheuhammer AM, Leighton FA, Pearce PA (1992) Heavy metal and metallothionein concentrations in Atlantic Canadian seabirds. Arch Environ Contam Toxicol 22:63–73

    Article  Google Scholar 

  • Erikson KM, Aschner M (2003) Manganese neurotoxicity and glutamate-GABA interaction. Neurochem Int 43:475–480

    Article  CAS  Google Scholar 

  • Espejo W, Celis J, GonzÃlez-Acuña D, Jara S, Barra R (2014) Concentration of trace metals in excrements of two species of penguins from different locations of the Antarctic peninsula. Polar Biol 37:675–683

    Article  Google Scholar 

  • Evers DC, Savoy LJ, DeSorbo CR, Yates DE, Hanson W, Taylor KM, Siegel LS, Cooley JH Jr, Bank MS, Major A, Munney K, Mower BF, Vogel HS, Schoch N, Pokras M, Goodale MW, Fair J (2008) Adverse effects from environmental mercury loads on breeding common loons. Ecotoxicology 17:69–81

    Article  CAS  Google Scholar 

  • Falkowska L, Reindl AR, Szumilo E, Kwaśniak J, Staniszewska M, Bełdowska M, Lewandowska A, Krause I (2013) Mercury and chlorinated pesticides on the highest level of the food web as exemplified by herring from the southern Baltic and African penguins from the zoo. Water Air Soil Pollut 224:1549

    Article  CAS  Google Scholar 

  • Fimreite N (1974) Mercury contamination of aquatic birds in northwestern Ontario. J Wildl Manag 38:120–131

    Article  CAS  Google Scholar 

  • Finger A, Lavers JL, Dann P, Nugegoda D, Orbell JD, Robertson B, Scarpaci C (2015) The little penguin (Eudyptula minor) as an indicator of coastal trace metal pollution. Environ Pollut 205:365–377

    Article  CAS  Google Scholar 

  • Fitzgerald WF, Lamborg CH, Hammerschmidt CR (2007) Marine biogeochemical cycling of mercury. Chem Rev 107:641–662

    Article  CAS  Google Scholar 

  • Franson JC (1996) Interpretation of tissue lead residues in birds other than waterfowl. In: Beyer WN, Heinz GH, Redmon-Norwood AW (eds) Environmental contaminants in wildlife. Interpreting tissue concentrations. Lewis, Boca Raton, FL, pp 264–279

    Google Scholar 

  • Franson JC, Hollmén TE, Flint PL, Grand JB, Lanctot RB (2003) Contaminants in molting long-tailed ducks and nesting common eiders in the Beaufort Sea. Mar Pollut Bull 45:504–513

    Google Scholar 

  • Franson JC, Hoffman DJ, Wells-Berlin A, Perry MC, Shearn-Bochsler V, Finley DL, Flint PL, Hollmén T (2007) Effects of dietary selenium on tissue concentrations, pathology, oxidative stress, and immune function in common eiders (Somateria mollissima). J Toxicol Environ Health A 70:861–874

    Article  CAS  Google Scholar 

  • Frias JE, Gil MN, Esteves JL, Borboroglu PG, Kane OJ, Smith JR, Boersma PD (2012) Mercury levels in feathers of Magellanic penguins. Mar Pollut Bull 64:1265–1269

    Article  CAS  Google Scholar 

  • Furness RW (1996) Cadmium in birds. In: Beyer WN, Heinz GH, Redmon-Norwood AW (eds) Environmental contaminants in wildlife. Interpreting tissue concentrations. Lewis, Boca Raton, FL, pp 389–404

    Google Scholar 

  • Furness RW, Muirhead SJ, Woodburn M (1986) Using bird feathers to measure mercury in the environment: relationships between mercury content and molt. Mar Pollut Bull 17:27–30

    Article  CAS  Google Scholar 

  • García P, Boersma PD (2013) Penguins: natural history and conservation. University of Washington Press, Seattle & London, p 328

    Google Scholar 

  • Gasparik J, Vladarova D, Capcarova M, Smehyl P, Slamecka J, Garaj P, Stawarz R, Massanyi P (2010) Concentration of lead, cadmium, mercury and arsenic in leg skeletal muscles of three species of wild birds. J Environ Sci Health A 45:818–823

    Article  CAS  Google Scholar 

  • Gibbs PJ (1995) Heavy metal and organochlorine concentrations in tissues of the little penguin Eudyptula minor. In: Dann P, Norman I, Reilly P (eds) The penguins. Surrey Beatty & Sons, Australia, pp 393–419

    Google Scholar 

  • Gilani SH, Alibhai Y (1990) Teratogenicity of metals to chick embryos. Toxicol Environ Health 30:23–31

    Article  CAS  Google Scholar 

  • Gochfeld M (1997) Spatial patterns in a bioindicator: heavy metal and selenium concentration in eggs of herring gulls (Larus argentatus) in the New York bight. Arch Environ Contam Toxicol 33:63–70

    Article  CAS  Google Scholar 

  • Gochfeld M, Belant JL, Shukla T, Benson T, Burger J (1996) Heavy metals in laughing gulls: gender, age and tissue differences. Environ Toxicol Chem 15:2275–2283

    Article  CAS  Google Scholar 

  • Goutner V, Furness R, Papakonstantinou K (2000) Mercury in feathers of Audouin’s Gull (Larus audouinii) chicks from northeastern Mediterranean colonies. Arch Environ Contam Toxicol 39:200–204

    Article  CAS  Google Scholar 

  • Goutte A, Barbraud C, Herzke D, Bustamante P, Angelier F, Tartu S, Clément-Chastel C, Moe B, Bech C, Gabrielsen GW, Bustnes JO, Chastel O (2015) Survival rate and breeding outputs in a high Arctic seabird exposed to legacy persistent organic pollutants and mercury. Environ Pollut 200:1–9

    Article  CAS  Google Scholar 

  • Goyer RA (1997) Toxic and essential metal interactions. Annu Rev Nutr 17:37–50

    Article  CAS  Google Scholar 

  • Hoffman DJ (2002) Role of selenium toxicity and oxidative stress in aquatic birds. Aquat Toxicol 57:11–26

    Article  CAS  Google Scholar 

  • Honda K, Yamamoto Y, Hidaka H, Tatsukawa R (1986) Heavy metal accumulation in Adélie penguin, Pygoscelis adeliae, and their variations with the reproductive process. Mem Natl Inst Polar Res 40:443–453

    Google Scholar 

  • Honda K, Marcovecchio JE, Kan S, Tatsukawa R, Ogi H (1990) Metal concentrations in pelagic seabirds from the North Pacific Ocean. Arch Environ Contam Toxicol 19:704–711

    Article  CAS  Google Scholar 

  • Iavicoli I, Fontana L, Bergamaschi A (2009) The effects of metals as endocrine disruptors. J Toxicol Environ Health B 12:206–223

    Article  CAS  Google Scholar 

  • Ikemoto T, Kunito T, Tanaka H, Baba N, Miyazaki N, Tanabe S (2004) Detoxification mechanism of heavy metals in marine mammals and seabirds: interaction of selenium with mercury, silver, copper, zinc, and cadmium in liver. Arch Environ Contam Toxicol 47:402–413

    Article  CAS  Google Scholar 

  • Jerez S, Motas M, Palacios MJ, Valera F, Cuervo JJ, Barbosa A (2011) Concentration of trace elements in feathers of three Antarctic penguins: geographical and interspecific differences. Environ Pollut 159:2412–2419

    Article  CAS  Google Scholar 

  • Jerez S, Motas M, Benzal J, Diaz J, Vidal V, D’Amico V, Barbosa A (2013a) Distribution of metals and trace elements in adult and juvenile penguins from the Antarctic peninsula area. Environ Sci Pollut R 20:3300–3311

    Article  CAS  Google Scholar 

  • Jerez S, Motas M, Benzal J, Diaz J, Barbosa A (2013b) Monitoring trace elements in Antarctic penguin chicks from south Shetland Islands, Antarctica. Mar Pollut Bull 69:67–75

    Article  CAS  Google Scholar 

  • Jin S, Seo S, Shin Y, Bing K, Kang T, Paek W, Lee D (2012) Heavy metal accumulations of 4 species of Anseriformes in Korea. J Korean Nat 5:345–349

    Article  Google Scholar 

  • Kaur N, Dhanju CK (2013) Heavy metals concentration in excreta of free living wild birds as indicator of environmental contamination. Bioscan 8:1089–1093

    Google Scholar 

  • Kehrig HA, Hauser-Davis RA, Seixas TG, Fillmann G (2015) Trace-elements, methylmercury and metallothionein levels in Magellanic penguin (Spheniscus magellanicus) found stranded on the southern Brazilian coast. Mar Pollut Bull 96:450–455

    Article  CAS  Google Scholar 

  • Khan A, Hussain H, Sattar A, Khan M, Abbas R (2014) Toxico-pathological aspects of arsenic in birds and mammals: a review. Int J Agric Biol 16:1213–1224

    CAS  Google Scholar 

  • Kim J, Koo T (2007) Heavy metal concentrations in diet and livers of black-crowned night heron Nycticorax nycticorax and grey heron Ardea cinerea chicks from Pyeongtaek, Korea. Ecotoxicology 16:411–416

    Article  CAS  Google Scholar 

  • Kim J, Oh J (2014a) Trace element concentrations in eggshells and egg contents of black-tailed gull (Larus crassirostris) from Korea. Ecotoxicology 23:1147–1152

    Article  CAS  Google Scholar 

  • Kim J, Oh J (2014b) Relationships of metals between feathers and diets of black-tailed gull (Larus crassirostris) chicks. Bull Environ Contam Toxicol 92:265–269

    Article  CAS  Google Scholar 

  • Kim J, Oh J (2014c) Heavy metal concentrations in black-tailed gull (Larus crassirostris) chicks, Korea. Chemosphere 112:370–376

    Article  CAS  Google Scholar 

  • Kim EY, Murakami T, Saeki K, Tatsukawa R (1996) Mercury levels and its chemical form in tissues and organs of seabirds. Arch Environ Contam Toxicol 30:259–266

    Article  CAS  Google Scholar 

  • Kim EY, Goto R, Tanabe S, Tanaka H, Tatsukawa R (1998) Distribution of 14 elements in tissues and organs of oceanic seabirds. Arch Environ Contam Toxicol 35:638–645

    Article  CAS  Google Scholar 

  • Kim M, Park K, Park J, Kwak I (2013) Heavy metal contamination and metallothionein mRNA in blood and feathers of black-tailed gulls (Larus crassirostris) from South Korea. Environ Monit Assess 185:2221–2230

    Article  CAS  Google Scholar 

  • Kler T, Vashishat N, Kumar M (2014) Heavy metals concentration in excreta of avian species from Ludhiana district. Int J Adv Res 2:873–879

    CAS  Google Scholar 

  • Lalancette A, Morin Y, Measures L, Fournier M (2003) Contrasting changes of sensitivity by lymphocytes and neutrophils to mercury in developing grey seals. Dev Comp Immunol 27:735–747

    Article  CAS  Google Scholar 

  • Larison JR, Likens GE, Fitzpatrick JW, Crock JG (2000) Cadmium toxicity among wildlife in the Colorado Rocky Mountains. Nature 406:181–183

    Article  CAS  Google Scholar 

  • Lavoie R, Jardine T, Chumchal M, Kidd K, Campbell L (2013) Biomagnification of mercury in aquatic food webs: a worldwide meta-analysis. Environ Sci Technol 47:13385–13394

    Article  CAS  Google Scholar 

  • Lebedeva NV (1997) Accumulation of heavy metals by birds in the southwest of Russia. Russ J Ecol 28:41–46

    Google Scholar 

  • Lee DP (1996) Relationship of heavy metal level in birds. Bull Kor Inst Orni 5:59–67

    Google Scholar 

  • Lemley AD (1993) Guidelines for evaluating selenium data form aquatic monitoring and assessment studies. Environ Monit Assess 28:83–100

    Article  Google Scholar 

  • Lescroël A, Ridoux V, Bost CA (2004) Spatial and temporal variation in the diet of the gentoo penguin (Pygoscelis papua) at Kerguelen Islands. Polar Biol 27:206–216

    Article  Google Scholar 

  • Lim CK (1991) Porphyrins. In: Hanai T (ed) Liquid chromatography in biomedical analysis. Elsevier, Amsterdam, pp 209–229

    Google Scholar 

  • Lock JW, Thompson DR, Furness RW (1992) Metal concentrations in seabirds of the New Zealand region. Environ Pollut 75:289–300

    Article  CAS  Google Scholar 

  • Lucia M, André JM, Gontier K, Diot N, Veiga J, Davail S (2010) Trace element concentrations (mercury, cadmium, copper, zinc, lead, aluminum, nickel, arsenic, and selenium) in some aquatic birds of the Southwest Atlantic Coast of France. Arch Environ Contam Toxicol 58:844–853

    Article  CAS  Google Scholar 

  • Majer A, Petti M, Corbisier T, Ribeiro A, Theophilo C, de Lima FP, Figueira R (2014) Bioaccumulation of potentially toxic trace elements in benthic organisms of Admiralty Bay (king George Island, Antarctica). Mar Pollut Bull 79:321–325

    Article  CAS  Google Scholar 

  • Malinga M, Szefer P, Gabrielsen G (2010) Age, sex and spatial dependent variations in heavy metals levels in the glaucous gulls (Larus hyperboreus) from the Bjørnøya and Jan Mayen, Arctic. Environ Monit Assess 169:407–416

    Article  CAS  Google Scholar 

  • Mansouri B, Babaei H, Hoshyari E (2012) Heavy metal contamination in feathers of western reef heron (Egretta gularis) and Siberian gull (Larus heuglini) from hara biosphere reserve of southern Iran. Environ Monit Assess 184:6139–6145

    Article  CAS  Google Scholar 

  • Martinez-Haro M, Taggart M, Mateo R (2010) Pb-al relationships in waterfowl feces discriminate between sources of Pb exposure. Environ Pollut 158:2485–2489

    Article  CAS  Google Scholar 

  • Mateo R, Lacorte S, Taggart M (2016) An overview of recent trends in wildlife ecotoxicology. Curr Trends Wildlife Res 1:125–150

    Article  Google Scholar 

  • Mathews T, Fisher N (2008) Trophic transfer of seven trace metals in a four-step marine food chain. Mar Ecol Prog Ser 367:23–33

    Article  CAS  Google Scholar 

  • Metcheva R, Yurukova L, Teodorova S, Nikolova E (2006) The penguin feathers as bioindicator of Antarctica environmental state. Sci Total Environ 362:259–265

    Article  CAS  Google Scholar 

  • Metcheva R, Yurukova L, Bezrukov V, Beltcheva M, Yankov Y, Dimitrov K (2010) Trace and toxic elements accumulation in food chain representatives at Livingston Island (Antarctica). Int J biol 2:155

    Article  Google Scholar 

  • Metcheva R, Yurukova L, Teodorova SE (2011) Biogenic and toxic elements in feathers, eggs, and excreta of gentoo penguin (Pygoscelis papua ellsworthii) in the Antarctic. Environ Monit Assess 182:571–585

    Article  CAS  Google Scholar 

  • Monteiro LR, Furness RW (2001) Kinetics, dose-response, and excretion of methylmercury in free-living adult Cory’s shearwaters. Environ Sci Technol 35:739–746

    Article  CAS  Google Scholar 

  • Morera M, Sanpera C, Crespo S, Jover L, Ruiz X (1997) Inter- and intraclutch variability in heavy metals and selenium levels in Audouin’s gull eggs from the Ebro Delta, Spain. Arch Environ Contam Toxicol 33:71–75

    Article  CAS  Google Scholar 

  • Nayak P (2002) Aluminum: impacts and disease. Environ Res 89:101–115

    Article  CAS  Google Scholar 

  • Neff JM (1997) Ecotoxicology of arsenic in the marine environment. Environ Toxicol Chem 16:917–927

    CAS  Google Scholar 

  • Newman MC (2015) Fundamentals of ecotoxicology: the science of pollution. CRC Press, Boca Raton, FL, p 680

    Google Scholar 

  • Nordberg M, Nordberg GF (2016) Trace element research-historical and future aspects. J Trace Elem Med Biol 38:46–52

    Article  CAS  Google Scholar 

  • Norheim G, Borch-Iohnsen B (1990) Chemical and morphological studies of liver from eider (Somateria mollissima) in Svalbard with special reference to the distribution of copper. J Comp Pathol 102:457–466

    Article  CAS  Google Scholar 

  • Nygard T, Lie E, Rov N, Steinnes E (2001) Metal dynamics in an Antarctic food chain. Mar Pollut Bull 42:598–602

    Article  CAS  Google Scholar 

  • Nyholm NE (1981) Evidence of involvement of aluminum in causation of defective formation of eggshells and of impaired breeding in wild passerine birds. Environ Res 26:363–371

    Article  CAS  Google Scholar 

  • O’Flaherty EJ (1998) Physiologically based models of metal kinetics. Crit Rev Toxicol 28:271–317

    Article  Google Scholar 

  • Ochoa-Acuña H, Sepúlveda MS, Gross TS (2002) Mercury in feathers from Chilean birds: influence of location: feeding strategy, and taxonomic affiliation. Mar Pollut Bull 44:340–345

    Article  Google Scholar 

  • Ohlendorf HM, Kilness AW, Simmons JL, Stroud RK, Hoffman DJ, Moore JF (1988) Selenium toxicosis in wild aquatic birds. Toxicol Environ Health 24:67–92

    Article  CAS  Google Scholar 

  • Orłowski G, Polechoński R, Dobicki W, Zawada Z (2007) Heavy metal concentrations in the tissues of the black-headed gull Larus ridibundus L. nesting in the dam reservoir in south-western Poland. Pol J Ecol 55:777–787

    Google Scholar 

  • Outridge PM, Scheuhammer AM (1993) Bioaccumulation and toxicology of chromium: implications for wildlife. Rev Environ Contam Toxicol 130:31–77

    CAS  Google Scholar 

  • Parslow JLF, Jefferies DJ, Hanson HM (1973) Gannet mortality incidents in 1972. Mar Pollut Bull 4:41–43

    Article  CAS  Google Scholar 

  • Pedro S, Xavier JC, Tavares S, Trathan PN, Ratcliffe N, Paiva VH, Medeiros R, Pereira E, Pardal M (2015) Feathers as a tool to assess mercury contamination in gentoo penguins: variations at the individual level. PLoS One 10:e0137622. doi:10.1371/journal.pone.0137622

    Article  CAS  Google Scholar 

  • Pérez-López M, Cid-GalÃn F, HernÃndez-Moreno D, Oropesa-Jiménez AL, López-Beceiro A, Fidalgo-Álvarez LE, Soler-Rodríguez F (2005) Contenido de metales pesados en hígado y plumas de aves marinas afectadas por el accidente del “Prestige” en la costa de Galicia. Rev Toxicol 22:191–199. (in Spanish)

    Google Scholar 

  • Prashanth L, Kattapagari KK, Chitturi RT, Baddam VR, Prasad LK (2016) A review on role of essential trace elements in health and disease. J NTR Univ Health Sci 4:75–85

    Google Scholar 

  • Raidal SR, Shearer PL, Cannell BL, RJDB N (2006) Micromelia in little penguins (Eudyptula minor). J Avian Med Surg 20:258–262

    Article  Google Scholar 

  • Rattner BA, Golden NH, Toschik PC, McGowan PC, Custer TW (2008) Concentrations of metals in blood and feathers of nestling ospreys (Pandion haliaetus) in Chesapeake and Delaware bays. Arch Environ Contam Toxicol 54:114–122

    Article  CAS  Google Scholar 

  • Ribeiro AR, Eira C, Torres J, Mendes P, Miquel J, Soares AMVM, Vingada J (2009) Toxic element concentrations in the razorbill Alca torda (Charadriiformes, Alcidae) in Portugal. Arch Environ Contam Toxicol 56:588–595

    Article  CAS  Google Scholar 

  • Rodrigue J, Champoux L, Leclair D, Duchesne JF (2007) Cadmium concentrations in tissues of willow ptarmigan (Lagopus lagopus) and rock ptarmigan (Lagopus muta) in Nunavik, northern Québec. Environ Pollut 147:642–647

    Article  CAS  Google Scholar 

  • Roth JA (2006) Homeostatic and toxic mechanisms regulating manganese uptake, retention, and elimination. Biol Res 39:45–57

    Article  CAS  Google Scholar 

  • Rothschild RFN, Duffy LK (2005) Mercury concentrations in muscle, brain and bone of western Alaskan waterfowl. Sci Total Environ 349:277–283

    Article  CAS  Google Scholar 

  • Sagerup K, Savinov V, Savinova T, Kuklin V, Muir D, Gabrielsen G (2009) Persistent organic pollutants, heavy metals and parasites in the glaucous gull (Larus hyperboreus) on Spitsbergen. Environ Pollut 157:2282–2290

    Article  CAS  Google Scholar 

  • Sanchez-Hernandez JC (2000) Trace element contamination in Antarctic ecosystems. Rev Environ Toxicol 166:83–127

    CAS  Google Scholar 

  • SÃnchez-Virosta P, Espína S, García-FernÃndez AJ, Eeva T (2015) A review on exposure and effects of arsenic in passerine birds. Sci Total Environ 512-513:506–525

    Article  CAS  Google Scholar 

  • Santos IR, Silva-Filho EV, Schaefer C, Maria S, Silva CA, Gomes V, Passos MJ, Van Ngan P (2006) Baseline mercury and zinc concentrations in terrestrial and coastal organisms of Admiralty Bay, Antarctica. Environ Pollut 140:304–311

    Article  CAS  Google Scholar 

  • Šaric M, Lucchini R (2007) Manganese. In: Nordberg GF, Fowler BA, Nordberg M, Friberg L (eds) Handbook on the toxicology of metals. Academic Press, London, pp 645–674

    Google Scholar 

  • Savinov VM, Gabrielsen GW, Savinova TN (2003) Cadmium, zinc, copper, arsenic, selenium and mercury in seabirds from the Barents Sea: levels, inter-specific and geographical differences. Sci Total Environ 306:133–158

    Article  CAS  Google Scholar 

  • Scheifler R, Gauthier-Clerc M, Bohec CL, Crini N, Cœurdassier M, Badot PM, Giraudoux P, Maho YL (2005) Mercury concentrations in king penguin (Aptenodytes patagonicus) feathers at Crozet Islands (sub-Antarctic): temporal trend between 1966–1974 and 2000–2001. Environ Toxicol Chem 24:125–128

    Article  CAS  Google Scholar 

  • Scheuhammer AM (1987) The chronic toxicity aluminium, cadmium, mercury and lead in birds: a review. Environ Pollut 46:263–295

    Article  CAS  Google Scholar 

  • Scheuhammer AM, Basu N, Burgess NM, Elliot JE, Campbell GD, Wayland M, Champoux L, Rodrigue J (2008) Relationships among mercury, selenium, and neurochemical parameters in common loons (Gavia immer) and bald eagles (Haliaeetus leucocephalus). Ecotoxicology 17:93–101

    Article  CAS  Google Scholar 

  • Sjögren B, Iregren A, Elinder C-G, Yokel RA (2007) Aluminum. In: Nordberg GF, Fowler BA, Nordberg M, Friberg L (eds) Handbook on the toxicology of metals. Academic Press, London, pp 339–352

    Google Scholar 

  • Skoric S, Visnjić-Jeftic Z, Jaric I, Djikanovic V, Mickovic B, Nikcevic M, Lenhardt M (2012) Accumulation of 20 elements in great cormorant (Phalacrocorax carbo) and its main prey, common carp (Cyprinus carpio) and Prussian carp (Carassius gibelio). Ecotoxicol Environ Saf 80:244–251

    Article  CAS  Google Scholar 

  • Smichowski P, Vodopivez C, Muñoz-Olivas R, Gutierrez AM (2006) Monitoring trace elements in selected organs of Antarctic penguin (Pygoscelis adeliae) by plasma-based techniques. Microchem J 82:1–7

    Article  CAS  Google Scholar 

  • Soria ML, Repetto G, Repetto M (1995) Revisión general de la toxicología de los metales. In: Repetto M (ed) Toxicología avanzada. Ediciones Díaz de Santos, Madrid, pp 293–358 (in Spanish)

    Google Scholar 

  • Sparling DW, Lowe TP (1996) Environmental hazards of aluminum to plants, invertebrates, fish, and wildlife. Rev Environ Contam Toxicol 145:1–127

    CAS  Google Scholar 

  • Steinhagen-Schneider G (1986) Cadmium and copper levels in seals, penguins and skuas from the Weddell Sea in 1982/1983. Polar Biol 5:139–143

    Article  CAS  Google Scholar 

  • Stewart FM, Phillips RA, Catry P, Furness RW (1997) Influence of species, age and diet on mercury concentrations in Shetland seabirds. Mar Ecol-Prog Ser 151:237–244

    Article  CAS  Google Scholar 

  • Suedel BC, Boraczek JA, Peddicord RK, Clifford PA, Dillon TM (1994) Trophic transfer and biomagnification potential of contaminants in aquatic ecosystems. Rev Environ Contam Toxicol 136:21–89

    Article  CAS  Google Scholar 

  • Sun L, Xie Z (2001) Changes in lead concentration in Antarctic penguin droppings during the past 3,000 years. Environ Geol 40:1205–1208

    Article  CAS  Google Scholar 

  • Szefer P, Pempkowiak J, Skwarzec B, Bojanowski R, Holm E (1993) Concentration of selected metals in penguins and other representative fauna of the Antarctica. Sci Total Environ 138:281–288

    Article  CAS  Google Scholar 

  • Szopińska M, Namieśnik J, Polkowska Z (2016) How important is research on pollution levels in Antarctica? Historical approach, difficulties and current trends. Rev Environ Contam Toxicol. doi: 10.1007/398_2015_5008

  • Tartu S, Goutte A, Bustamante P, Angelier F, Moe B, Clément-Chastel C, Bech C, Gabrielsen GW, Bustnes JO, Chastel O (2013) To breed or not to breed: endocrine response to mercury contamination by an Arctic seabird. Biol Lett 9:20130317. doi:10.1098/rsbl.2013.0317

    Article  Google Scholar 

  • Tartu S, Bustamante P, Angelier F, Lendvai AZ, Moe B, Blévin P, Bech C, Gabrielsen GW, Bustnes JO, Chastel O (2016) Mercury exposure, stress and prolactin secretion in an Arctic seabird: an experimental study. Funct Ecol 30:596–604

    Article  Google Scholar 

  • Thompson DR (1990) Metal levels in marine vertebrates. In: Furness RW, Rainbow PS (eds) Heavy metals in the marine environment. CRC, Boca Raton, FL, pp 143–182

    Google Scholar 

  • Tin T, Fleming Z, Hughes K, Ainley D, Convey P, Moreno C, Pfeiffer S, Scott J, Snape I (2009) Impacts of local human activities on the Antarctic environment. Antarct Sci 21:3–33

    Article  Google Scholar 

  • UICN (2016) The IUCN Red List of Thereatened Species 2014.3. http://www.iucnredlist.org/details/22697817/0. Accessed 2 Jan 2016

  • Wastney ME, House WA, Barnes RM, Subramanian KN (2000) Kinetics of zinc metabolism: variation with diet, genetics and disease. J Nutr 130:1355–1359

    Article  Google Scholar 

  • Williams TD (1990) Annual variation in breeding biology of gentoo penguin, Pygoscelis papua, at Bird Island, South Georgia. J Zool 222:247–258

    Article  Google Scholar 

  • Yin X, Xia L, Sun L, Luo H, Wang Y (2008) Animal excrement: a potential biomonitor of heavy metal contamination in the marine environment. Sci Total Environ 399:179–185

    Article  CAS  Google Scholar 

  • Zamani-Ahmadmahmoodi R, Alahverdi M, Mirzaei R (2014) Mercury concentrations in common tern Sterna hirundo and slender-billed gull Larus genei from the Shadegan marshes of Iran, in north-western corner of the Persian Gulf. Biol Trace Elem Res 159:161–166

    Article  CAS  Google Scholar 

  • Zhang W, Ma J (2011) Waterbirds as bioindicators of wetland heavy metal pollution. Procedia Environ Sci 10:2769–2774

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Winfred E. Espejo is a graduate student at the Universidad de Concepción, Chile, who is sponsored by the CONICYT-Chile to pursue PhD research. This study was financially supported by the project INACH RG 09-14 (J. Celis), INACH T31-11 (G. Chiang), and FONDAP CRHIAM 15 13 0015 (R. Barra). Thanks also are given to project 216.153.025-1.0 of the Research Division of the Universidad de Concepción. Many thanks are also given to Dr. Evelyn Habit, Liseth Chaura, and peer reviewers for their useful suggestions. Finally, the authors also thank Diane Haughney for the English revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José E. Celis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Espejo, W., Celis, J.E., GonzÃlez-Acuña, D., Banegas, A., Barra, R., Chiang, G. (2017). A Global Overview of Exposure Levels and Biological Effects of Trace Elements in Penguins. In: de Voogt, P. (eds) Reviews of Environmental Contamination and Toxicology Volume 245. Reviews of Environmental Contamination and Toxicology, vol 245. Springer, Cham. https://doi.org/10.1007/398_2017_5

Download citation

Publish with us

Policies and ethics