Skip to main content

A Review of the Environmental Degradation, Ecotoxicity, and Bioaccumulation Potential of the Low Molecular Weight Polyether Polyol Substances

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology Volume 244

Abstract

“Polyalkylene glycol” is the name given to a broad class of synthetic organic chemicals which are produced by polymerization of one or more alkylene oxide (epoxide) monomers, such as ethylene oxide (EO) and propylene oxide (PO), with various initiator substances which possess amine or alcohol groups. A generalization of this polymerization reaction is illustrated in Fig. 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

DEG:

Diethylene glycol; 2,2′-oxy-diethanol

EO:

Ethylene oxide; oxirane

GLY:

Glycerol; propane-1,2,3-triol

MPG:

Mono-propylene glycol; propane-1,2-diol

NTE:

2,2′,2″-Nitrilotriethanol; triethanol amine

o-TDA:

Methyl-phenylene-2,3-diamine and methyl-phenylene-3,4-diamine, mixture of isomers

PEC:

Predicted environmental concentration

PEG:

Polyethylene glycol

PENT:

Pentaerythritol; 2,2-bis(hydroxymethyl)propane-1,3-diol

PNEC:

Predicted no-effect concentration

PO:

Propylene oxide; methyloxirane

SOR:

Sorbitol; glucitol; 1,2,3,4,5,6-hexahydroxy-cyclohexane

SUC:

Sucrose; α,β-1,4-gluco-fructopyranose

TMP:

1,1,1-Trimethylolpropane; propylidyne-1,1,1-trimethanol

References

  • Abraham MH, Chadha HS, Martins F, Mitchell RC, Bradbury MW, Gratton J (1999) Hydrogen bonding part 46: a review of the correlation and prediction of transport properties by an LFER method: physicochemical properties, brain penetration, and skin permeability. Pest Sci 55:78–88

    CAS  Google Scholar 

  • Austin T, Eadsforth C (2014) Development of a chronic fish toxicity model for predicting sub-lethal NOEC values for non-polar narcotics. SAR QSAR Environ Res 25(2):147–160

    CAS  Google Scholar 

  • Austin T, Denoyelle M, Chaudry A, Stradling S, Eadsforth C (2015) European chemicals agency dossier submissions as an experimental data source: refinement of a fish toxicity model for predicting acute LC50 values. Environ Toxicol Chem 34(2):369–378

    CAS  Google Scholar 

  • Bernhard M, Eubler JP, Zok S, Knepper TP (2008) Aerobic biodegradation of polyethylene glycols of different molecular weights in wastewater and seawater. Water Res 42(19):4791–4801

    CAS  Google Scholar 

  • Chinn H, Löchner U, Kishi A (2006) CEH marketing research report: polyether polyols for urethanes. Report No. 688.3000B. Chemical Economics Handbook, SRI Consulting, Inc., Menlo Park, CA

    Google Scholar 

  • Chinn H, Löchner U, Kishi A (2007) Product review: polyalkylene glycols. Report No. 688.3500A. Chemical Economics Handbook, SRI Consulting Inc., Menlo Park, CA

    Google Scholar 

  • Clarke DJ, George SG, Burchell B (1991) Glucuronidation in fish. Aquat Toxicol 20:35–56

    CAS  Google Scholar 

  • Di Toro DM, McGrath JA, Hansen DJ (2000) Technical basis for narcotic chemicals and polycyclic aromatic hydrocarbon criteria. I. Water and tissue. Environ Toxicol Chem 19(8):1951–1970

    Google Scholar 

  • Dow Chemical Company (2017) EOPO-EDA degradation. Final report no. AL-2016-008690. Personal communication by Edwin De Souter, The Dow Chemical Company

    Google Scholar 

  • Droge STJ, Yarza-Irusta L, Hermens JML (2009) Modeling nonlinear alcohol ethoxylates to sediment: the influence of molecular structure and sediment properties. Environ Sci Technol 43:5712–5718

    CAS  Google Scholar 

  • Eadsforth C, Adams C, Austin T, Corry T, Forbes S, Harris S (2014) Validation of an HPLC method for determining log pow values of surfactants. Tenside Surfactant Deterg 51(3):230–239

    CAS  Google Scholar 

  • ECHA (2008) Guidance on information requirements and chemical safety assessment, Chapter R11: PBT Assessment European Chemicals Agency Helsinki, Finland May 2008

    Google Scholar 

  • ECHA (2012) European Chemicals Agency. Guidance on information requirements and chemical safety assessment. Chapter R.16: environmental exposure assessment. Version 2.1, October 2012. http://echa.europa.eu/documents/10162/13632/information_requirements_r16_en.pdf. Accessed 18 Sept 2015

  • ECHA (2014) European Chemicals Agency. Guidance on information requirements and chemical safety assessment. Chapter R.11: PBT/vPvB assessment. Version 2.0, November 2014. http://echa.europa.eu/documents/10162/13632/information_requirements_r11_en.pdf. Accessed 18 Sept 2015

  • ECHA (2016) 3(or 4)-Methylbenzene-1,2-diamine, registration dossier. http://echa.europa.eu/registration-dossier/-/registered-dossier/14759/6/2/5. Accessed 8 Mar 2016

  • ECHA (2017a) Ethylenediamine, registration dossier. https://echa.europa.eu/registration-dossier/-/registered-dossier/15765/4/22. Accessed 13 Jan 2017

  • ECHA (2017b) Nitrilotriethanol, registration dossier. https://echa.europa.eu/registration-dossier/-/registered-dossier/15134/4/22. Accessed 13 Jan 2017

  • Endo S, Escher BI, Gross K-U (2011) Capacity of membrane lipids to accumulate neutral organic chemicals. Environ Sci Technol 45:5912–5921

    CAS  Google Scholar 

  • Escher BI (2001) Molecular mechanisms in aquatic ecotoxicology: specific and non-specific membrane toxicity. Habilitation thesis, Swiss Federal Institute of Technology, Zurich, Switzerland

    Google Scholar 

  • Escher BI, Hermens JLM (2002) Mode of action in ecotoxicology: their role in body burdens, specific sensitivity, QSAR and mixture effects. Environ Sci Technol 36(20):4201–4217

    CAS  Google Scholar 

  • Escher BI, Schwarzenbach RP (2002) Mechanistic studies on baseline toxicity testing and uncoupling of organic compounds as a basis for modeling effective membrane concentrations in aquatic organisms. Aquat Toxicol 64:20–35

    CAS  Google Scholar 

  • Escher BI, Bramaz N, Eggen RIL, Richter M (2005) In vitro assessment methods of toxic action of pharmaceuticals in aquatic life. Environ Sci Technol 39:3090–3100

    CAS  Google Scholar 

  • Escher BI, Ashauer R, Hermens JLM, Lee J-H, Leslie HA, Mayer P, Meader JP, Warme MSJ (2010) Crucial role of mechanisms and mode of toxic action for understanding tissue residue toxicity and internal effect concentration of organic chemicals. Integr Environ Assess Manag 7(1):28–49

    Google Scholar 

  • European Commission (2004) Regulation (EC) No. 648/2004 of the European Parliament of the Council of 31st March on Detergents. Off J Eur Union L104:1–18

    Google Scholar 

  • European Commission (2006) Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH). Off J Eur Union L396:54

    Google Scholar 

  • European Union (2016) Joint Research Center: The European Union System for the Evaluation of Substances (EUSES). https://ec.europa.eu/jrc/en/scientific-tool/european-union-system-evaluation-substances. Accessed 29 Dec 2016

  • Flammersheim HJ (1998) Kinetic and mechanism of the epoxide-amine polyaddition. Thermochim Acta 310:153–159

    CAS  Google Scholar 

  • Flory PJ (1940) Molecular size distribution in ethylene oxide polymers. J Am Chem Soc 62(6):1561–1565

    CAS  Google Scholar 

  • Franke C, Studinger G, Berger G, Böhling S, Bruckmann U, Cohors-Fresenberg D, Jöhncke U (1994) The assessment of bioaccumulation. Chemosphere 29:1501–1514

    CAS  Google Scholar 

  • Gallet G (2001) From fast to slow degradation: different strategies to characterize polymer degradation by chromatographic techniques. PhD thesis, Department of Polymer Technology, Royal Institute of Technology, Stockholm, Sweden

    Google Scholar 

  • Gallet G, Carroccio S, Rizzarelli P (2002) Thermal degradation of poly(ethylene oxide—propylene oxide—ethylene oxide) triblock copolymer: comparative study by SEC/NMR, SEC/MALDI-TOFF MS and SPME-GC/MS. Polymer 43:1081–1094

    CAS  Google Scholar 

  • GESAMP (2002) The revised GESAMP hazard evaluation procedure for chemical substances carried by ships. International Maritime Organization (IMO), Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP). London, UK

    Google Scholar 

  • Hansch C, Leo A (1979) Substituent constants for correlation analysis in chemistry and biology. Wiley Interscience, New York, NY

    Google Scholar 

  • ISOPA (2014) Guidelines for the safe transportation, unloading and storage of packaged TDI and MDI. European Diisocyanate and Polyol Producer Association, Avenue E. Van Nieuwenhyuse Laan 4, B-1160 Brussels, Belgium. http://isopa.org/media/1604/en_final-version-december-2014.pdf. Accessed 6 Jan 2017

  • ISOPA (2016) Personal communication Mr Joerg Palmersheim, Secretary General of the European Diisocyanate and Polyol Producer Association, Avenue E. Van Nieuwenhyuse Laan 4, B-1160 Brussels, Belgium

    Google Scholar 

  • Jaworska J, Dimitrov S, Nikolova N, Mekenyan O (2002) Probabilistic assessment of biodegradability based on metabolic pathways: CATABOL system. SAR QSAR Environ Res 13(2):307–323

    CAS  Google Scholar 

  • Kawai F (2002) Microbial degradation of polyethers. Appl Microbiol Biotechnol 58:30–38

    CAS  Google Scholar 

  • Kawai F, Hanada K, Tani Y, Ogata K (1977) Bacterial degradation of water-insoluble polymer (polypropylene glycol). J Ferment Technol 55(2):89–96

    CAS  Google Scholar 

  • Klimisch HJ, Andreae M, Tillmann U (1997) A systematic approach for evaluating the quality of experimental toxicological and Ecotoxicological data. Regul Toxicol Pharmacol 25:1–5

    CAS  Google Scholar 

  • Könemann H (1981) Fish toxicity tests with mixtures of more than two chemicals: a proposal for a quantitative approach and experimental results. Toxicology 19:229–238

    Google Scholar 

  • Kühn R, Pattard M (1990) Results of the harmful effects of water pollutants to green algae (Scenedesmus subspicatus) in the cell multiplication inhibition test. Water Res 24(1):31–38

    Google Scholar 

  • Kühn R, Pattard M, Pernak K-D, Winter A (1989) Results of the harmful effects of water pollutants to Daphnia magna in the 21 d reproduction test. Water Res 23(4):501–510

    Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and developmental settings. Adv Drug Deliv Rev 23:3–25

    CAS  Google Scholar 

  • Lovering EG, Laidler KJ (1962) Kinetic studies of some alcohol-isocyanate reactions. Can J Chem 40:31–37

    CAS  Google Scholar 

  • McCarty LS, Mackay D (1993) Enhancing ecotoxicological modeling and assessment: body residues and modes of toxic action. Environ Sci Technol 27:1719–1728

    Google Scholar 

  • McCarty LS, Mackay D, Smith AD, Ozburn AD, Dixon DG (1993) Residue-based interpretation of toxicity and bioconcentration QSARs from aquatic bioassays: polar narcotic organics. Ecotoxicol Environ Saf 25:253–270

    CAS  Google Scholar 

  • Meylan WM, Howard PH (1993) Computer estimation of the atmospheric gas-phase reaction rate of organic compounds with hydroxyl radicals and ozone. Chemosphere 26:2293–2299

    CAS  Google Scholar 

  • Meylan WM, Howard PH (1995) Atom/fragment contribution method for estimating octanol-water partition coefficient. J Pharm Sci 84:83–92

    CAS  Google Scholar 

  • Meylan WM, Howard PH, Boethling RS, Aronson D, Printup H, Gouchie S (1999) Improved method for estimating bioconcentration/bioaccumulation factor from octanol/water partition coefficient. Environ Toxicol Chem 18:664–672

    CAS  Google Scholar 

  • Muller MT, Zehnder AJB, Escher BI (1999) Membrane toxicity of alcohol ethoxylates. Environ Toxicol Chem 18:2767–2774

    CAS  Google Scholar 

  • Nabb DL, Mingoia RT, Yang C-H, Han X (2006) Comparison of basal level metabolic enzyme activities of freshly isolated hepatocytes from rainbow trout (Oncorhynchus mykiss) and rat. Aquat Toxicol 80:52–59

    CAS  Google Scholar 

  • OECD (1981) OECD guidelines for the testing of chemicals, guideline no. 106: adsorption/desorption. Organisation for economic co-operation and development, Paris, France

    Google Scholar 

  • OECD (1995) OECD guidelines for the testing of chemicals, guideline no. 107: partition coefficient (n-octanol/water): shake flask method. Organisation for economic co-operation and development, Paris, France

    Google Scholar 

  • OECD (2001) OECD guidelines for the testing of chemicals, guideline no. 121: estimation of the adsorption coefficient (Koc) on soil and on sewage sludge using high performance liquid chromatography. Organisation for economic co-operation and development, Paris, France

    Google Scholar 

  • OECD (2003) Propylene glycol ethers. SIDS initial assessment report (SIAR) for SIAM 17, Arona, Italy, 11–14 November 2003. http://www.inchem.org/documents/sids/sids/pges.pdf. Accessed 29 Sept 2015

  • OECD (2004) OECD guidelines for testing of chemicals, guideline no. 117: partition coefficient (n-octanol/water): HPLC method. Organization for economic cooperation and development, Paris, France

    Google Scholar 

  • OECD (2007) Guidance on definitions of key terms for new chemical notification. OECD Environment Directorate,Environment, Health and Safety Division, Paris, France. Document No. Env/Jm/Mono(2007)13. Accessed 20 June 2007

    Google Scholar 

  • Podoll RT, Irwin KC, Brendlinger S (1987) Sorption of water soluble oligomers on sediments. Environ Sci Technol 21:562–568

    CAS  Google Scholar 

  • Poole SK, Poole CF (1999) Chromatographic models for the sorption of neutral organic compounds by soil from water and air. J Chromatogr A 845:381–400

    CAS  Google Scholar 

  • Potts RO, Guy R (1992) Predicting skin permeability. Pharm Res 9:663–669

    CAS  Google Scholar 

  • Rekker RF, Mannhold R (1992) Calculation of drug lipophilicity: the hydrophobic fragment constant approach. VCH Verlagsgeseilschaft mbH, Weinheim, Germany

    Google Scholar 

  • Schmolka IR (1977) A review of block polymer surfactants. J Am Oil Chem Soc 54(3):110–116

    CAS  Google Scholar 

  • Tachibana S, Kuba N, Kawai F, Duine JA, Yasuda M (2003) Involvement of a quinoprotein (PQQ-containing) alcohol dehydrogenase in the degradation of polypropylene glycols by the bacterium Stenotrophomonas maltophilia. FEMS Microbiol Lett 218(2):345–349

    CAS  Google Scholar 

  • Testa B, Jenner P (eds) (1976) Drug metabolism: chemical and biochemical aspects, Drug and the pharmaceutical sciences series, vol 4. Dekker, New York, NY

    Google Scholar 

  • Traverso-Soto JM, Lara-Martin PA, Leon VM, Gonzalez-Mazo E (2013) Analysis of alcohol polyethoxyla-tes and polyethylene glycols in marine sediments. Talanta 110:171–179

    CAS  Google Scholar 

  • Traverso-Soto JM, Brownawell BJ, Gonzalez-Mazo E, Lara-Martin PA (2014) Partitioning of alcohol ethoxylates and polyethylene glycols in the marine environment: field samplings vs laboratory experiments. Sci Total Environ 490:671–678

    CAS  Google Scholar 

  • U.S. EPA (2010) EPI Suite software, v3.12. United States Environmental Protection Agency, Office of Pollution Prevention and Toxics, Washington, DC, USA. https://www.epa.gov/tsca-screening-tools/download-epi-suitetm-estimation-program-interface-v411

  • U.S. ITC (2005) Harmonized tariff schedule of the United States. United States International Trade Commission. Washington, DC

    Google Scholar 

  • Ullmann (1993) Ullmann’s Encyclopedia of Industrial Chemistry, 5th Edition, Volume A22, VCH Publishers Inc. UNEP. (2001). United Nations Environment Programme, Stockholm Convention on Persistent Organic Pollutants (POPs). May 2001, Stockholm, Sweden. http://www.pops.int

  • Vaes WHJ, Urrestarazu-Ramos E, Hamwick C, van Holstein I, Blaaboer BJ, Seinen W, Verhaar HJM, Hermans JLM (1997) Solid phase microextraction as a tool to determine membrane/water partitioning coefficients and bioavailable concentrations in in-vitro systems. Chem Res Toxicol 10:1067–1072

    CAS  Google Scholar 

  • Verhaar H J M, Hermens JLM, Mulder W (1999) QSAR for ecotoxicity. In Fate and activity modelling of environmental pollutants using structure-activity relationships. EU contract EV5VCT92-0211, RITOX, Utrecht, The Netherlands. https://eurl-ecvam.jrc.ec.europa.eu/laboratories-research/predictive_toxicology/qsar_tools/toxtree

  • West RJ (2003a) Propylene glycol-derived substances: evaluation of biodegradability in seawater according to OECD guideline 306. Unpublished study conducted by the Dow Chemical Company, Midland, MI

    Google Scholar 

  • West RJ (2003b) Propylene glycol-derived substances: evaluation of ready biodegradability according to OECD guideline 301F- Manometric respirometry test. Unpublished study conducted by the Dow Chemical Company, Midland, MI

    Google Scholar 

  • West RJ, Davis JW, Pottenger LH, Banton ML, Graham C (2007) Biodegradability relationships among propylene glycol substances in the organisation for economic co-operation and development ready- and seawater biodegradability tests. Environ Toxicol Chem 26(5):862–871

    CAS  Google Scholar 

  • White GF, Russel NJ, Tidswell EC (1996) Bacterial scission of ether bonds. Microbiol Rev 60(1):216–232

    CAS  Google Scholar 

  • Yang L, Heatley F, Blease TG, Thompson RIG (1996) A study of the mechanism of the oxidative thermal degradation of poly(ethylene oxide) and poly(propylene oxide) using 1H- and 13C-NMR. Eur Polym J 32:535–547

    CAS  Google Scholar 

  • Zgola-Grzeskowiak A, Grzeskowiak T, Zembrzuska J, Lukaszewski Z (2006) Comparison of biodegradation of poly(ethyle glycol)s and poly(propylene glycol)s. Chemosphere 64:803–809

    CAS  Google Scholar 

  • Zhao YT, Cronin MT, Dearden JC (1998) Quantitative structure-activity relationships of chemicals acting by non-polar narcosis—theoretical considerations. Quant Struct Act Relat 17:131–138

    CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Monika Leutbecher of Covestro Deutschland AG, Gitta Egbers of BASF Polyurethanes GmbH and Joerg Palmersheim, European Isocyanate and Polyols Producer Association (ISOPA) for their contributions to the discussion, and to Yunzhou Chai for performing the OASIS metabolism predictions. The authors gratefully acknowledge the many significant contributions of Dr. Urs Friederich (formerly Dow Europe GmbH) to the early development and drafting of this review. The authors are grateful to ISOPA for financial support. Views and opinions expressed in this paper are those of the authors and not necessarily of ISOPA.

Conflict of Interest

T. Schupp worked for BASF, a Polyether-polyol producer, until 2012.

B.T.A. Bossuyt is working for Huntsman, a Polyether-polyol producer.

R.J. West and S.M. Shen are working for Dow Chemical Company, a Polyether-polyol producer.

T. Austin and C.V. Eadsforth are working for Shell Chemical Company, a Polyether-polyol producer.

This work was sponsored by ISOPA, the European Isocyanate, and Polyol Producer Association. The authors declare that all data of the PEPOs available to them are evaluated and presented in good faith. The views presented are those of the authors and do not necessarily coincide with the views of ISOPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schupp .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Supplementary Data 1

(DOCX 1447 kb)

Supplementary Data 2

(DOCX 305 kb)

Supplementary Data 3

(DOCX 19 kb)

Supplementary Data 4

(DOCX 131 kb)

Appendices

Appendix 1: Toxicity to Fish; 96 h LC50

Composition

CAS-no.

Mn (g/mol)

Species

Value

TMP + PO

50586-59-9

340

Danio rerio

>100 mg/L

SUC + GLY + PO

9049-71-2

720

Pimephales promelas

27.2 g/L

SUC + PO

9049-71-2

440

Danio rerio

>4.2, <7.5 g/L

EDA + PO

25214-63-5

360

Danio rerio

>3.1, <7.5 g/L

EDA + PO

25214-63-5

480

Leuciscus idus

4.6 g/L

EDA + EO + PO

26316-40-5

280

Danio rerio

>100 mg/L

EDA + EO + PO

26316-40-5

280

Pimephales promelas

4.23 g/L

GLY + PO

25791-96-2

300

Leuciscus idus

>1 g/L

SOR + PO

52625-13-5

700

Leuciscus idus

>1 g/L

o-TDA + PO

63641-63-4

340

Danio rerio

>77 mg/L (LC0)

MPG + PO

25322-69-4

230

Danio rerio

>100 mg/L (LC0)

MPG + PO

25322-69-4

400

Poecelia reticulata

>100 mg/L (LC0)

MPG + PO

25322-69-4

450

Leuciscus idus

>4.6, <10 g/L

PENT + PO

9051-49-4

420

Danio rerio

>100 mg/L (LC0)

NTE + PO

37208-53-0

320

Danio rerio

>100 mg/L (LC0)

DEG + PO

9051-51-8

280

Danio rerio

>100 mg/L (LC0)

Appendix 2: Acute Toxicity to Crustacea (48 h EC50)

Composition

CAS-No.

Mn (g/mol)

Species

Value

TMP + PO

50586-59-9

340

Daphnia magna

>100 mg/L (EC0)

SUC + PO

9049-71-2

440

Daphnia magna

>100 mg/L (EC0)

SUC + GLY + PO

9049-71-2

720

Daphnia magna

9.89 g/L

EDA + PO

25214-63-5

360

Daphnia magna

>100 mg/L (EC0)

EDA + EO + PO

26316-40-5

280

Daphnia magna

>100 mg/L (EC0)

EDA + EO + PO

26316-40-5

280

Daphnia magna

305a and 103b mg/L

GLY + PO

25791-96-2

300

Daphnia magna

>100 mg/L (EC0)

SOR + PO

52625-13-5

700

Daphnia magna

>100 mg/L (EC0)

SOR + PO

52625-13-5

600

Acartia tonsa

>1000 mg/L (EC10)

o-TDA + PO

63641-63-4

340

Daphnia magna

>100 mg/L (EC0)

o-TDA + PO + EO

67800-94-6

520

Daphnia magna

>100 mg/L (EC0)

MPG + PO

25322-69-4

230

Daphnia magna

105 mg/L

PENT + PO

9051-49-4

420

Daphnia magna

>100 mg/L (EC0)

NTE + PO

37208-53-0

320

Daphnia magna

>100 mg/L (EC0)

DEG + PO

9051-51-8

280

Daphnia magna

>100 mg/L (EC0)

GLY + EO

31694-55-0

310

Daphnia magna

>100 mg/L (EC0)

  1. aNon-neutralized
  2. bNeutralized

Appendix 3: Toxicity to Algae (72 h)

Composition

CAS-No.

Mn (g/mol)

Species

ErC50 (mg/L)

NOECr (mg/L)

TMP + PO

50586-59-9

340

Desmodesmus subspicatus

>100

≥100

SUC + PO

9049-71-2

580

Desmodesmus subspicatus

>100

100

EDA + EO + PO

26316-40-5

280

Desmodesmus subspicatus

>100

100

GLY + PO

25791-96-2

300

Desmodesmus subspicatus

>100

100

SOR + PO

52625-13-5

600

Skeletonema costatum

>1000

1000

o-TDA + PO

63641-63-4

340

Desmodesmus subspicatus

>100

100

MPG + PO

25322-69-4

230

Desmodesmus subspicatus

>100

100

PENT + PO

9051-49-4

420

Desmodesmus subspicatus

>100

100

NTE + PO

37208-53-0

320

Desmodesmus subspicatus

>100

100

DEG + PO

9051-51-8

280

Desmodesmus subspicatus

>100

100

Appendix 4: Toxicity to Microorganisms

Composition

CAS-no.

Mn (g/mol)

Test

Value

TMP + PO

50586-59-9

340

Resp. inhib. activated sludge (OECD 209)

IC50/30 min > 10 g/L

SUC + PO

9049-71-2

500

Resp. inhib. activated sludge (OECD 209)

IC50/30 min > 0.72 g/L

EDA + PO

25214-63-5

360

Resp. inhib. activated sludge (OECD 209)

IC50 > 10 g/L (IC10)

EDA + EO + PO

26316-40-5

280

Resp. inhib. activated sludge (OECD 209)

IC50 > 10 g/L (IC10)

GLY + PO

25791-96-2

300

Resp. inhib. activated sludge (OECD 209)

IC50 > 10 g/L (IC0)

GLY + PO

25791-96-2

300

Pseudomonas putida growth inhibitiona)

LOEC = 6.6 g/L

SOR + PO

52625-13-5

600

Resp. inhib. activated sludge (OECD 209)

IC50 > 10 g/L (IC0)

SOR + PO

52625-13-5

700

Pseudomonas putida growth inhibitiona

LOEC = 2.4 g/L

o-TDA + PO

63641-63-4

340

Resp. inhib. activated sludge (OECD 209)

IC50 = 10 g/L

o-TDA + PO + EO

67800-94-6

520

Resp. inhib. activated sludge (OECD 209)

IC50 > 2 g/L (IC0)

MPG + PO

25322-69-4

230

Resp. inhib. activated sludge (OECD 209)

IC50 > 1 g/L (IC0)

MPG + PO

25322-69-4

450

Resp. inhib. activated sludge (OECD 209)

IC50 > 700 mg/L (IC0)

MPG + PO

25322-69-4

450

Pseudomonas putida growth inhibitiona)

LOAEC > 10 g/L (IC0)

PENT + PO

9051-49-4

420

Resp. inhib. activated sludge (OECD 209)

IC50 > 10 g/L (IC5)

NTE + PO

37208-53-0

320

Resp. inhib. activated sludge (OECD 209)

IC50 > 10 g/L (IC0)

DEG + PO

9051-51-8

280

Resp. inhib. activated sludge (OECD 209)

IC50 > 1 g/L (IC0)

GLY + EO

31694-55-0

310

Resp. inhib. activated sludge (OECD 209)

IC50 > 640 mg/L (IC10)

  1. Water quality—Pseudomonas putida growth inhibition test (Pseudomonas cell multiplication inhibition test). https://www.iso.org/obp/ui/#iso:std:iso:10712:ed-1:v1:en. Accessed at: June 23rd, 2016
  2. aGerman Umweltbundesamt: “Bewertung wassergefaehrdender Stoffe, LTwS Nr. 10, 1979.” See also: ISO 10712:1995(en)

Appendix 5: Metabolic Transformation of EDA + PO + EO, Modeled with OASIS®

1.1 Prediction of Biodegradation Metabolites of Polyols

Objective: The objective of this study is to identify potential metabolites from aerobic biodegradation of propoxylated/ethoxylated ethylenediamine polyol (EDA + EO + PO, CAS No. 26316-40-5), sorbitol propoxylated polyol (SOR + PO, CAS No. 52625-13-5), and propoxylated o-diaminotoluene (TDA + PO, CAS No. 63641-63-4) using prediction software.

Software: Prediction software OASIS Catalogic (v5.11.16) was selected. The Kinetic 301F Model (v12.15) implemented in OASIS Catalogic was deemed appropriate for this study. The model was developed based on a training database of catabolic pathways for more than 551 organic compounds. Training set data and expert knowledge were used to determine the principal transformations and to train the system to simulate aerobic catabolism of training chemicals. The documented pathways of microbial catabolism were collected from scientific papers, monographs, and databases accessible over the Internet.

Method: Seven representative molecular structures of these polyols (Tables 1820) representing various alkoxylation configurations were used for the prediction of their potential metabolites from aerobic biodegradation. The seven molecular structures included three variations from EDA + EO + PO (Table 18), two variations from SOR + PO (Table 19), and two variations from TDA + PO (Table 20). These seven representative molecular structures are in the applicability domain of the model defined by its parametric domain, structure fragment domain, and metabolic domain. Potential metabolites from aerobic biodegradation of the seven molecular structures were predicted using Kinetic 301F Model in OASIS Catalogic (v5.11.16). The metabolites with a predicted quantity of greater than or equal to 5 % (i.e., 0.05) were reported in this study.

Results: Potential metabolites from aerobic biodegradation of the seven representative molecular structures of the polyols are summarized in Tables 2127. Predicted quantities, octanol-water partition coefficient (logKow) values, and the predicted mode-of-action (predicted using the Verhaar Scheme (modified) and OASIS®) of the potential metabolites as well as their parent compounds are also shown in Tables 2128. Predicted metabolites have logKow values similar or less than their corresponding parent compounds. As far as the ecotoxicity and bioaccumulation potential of these polyols and their metabolites correlate with their logKow, the metabolites are not expected to be more toxic or more bioaccumulative than their parent compounds. However, it cannot be excluded that EDA and TDA-based PEPOs might release the core substance (initiator), which shows a higher ecotoxicity than the respective PEPO. Additionally, after mode of action prediction, a number of the metabolites fall into the categories “Reactive unspecified” or “Narcotic amine”; compounds that fall into these categories are expected to exert toxicity greater than expected via non-polar narcosis.

Conclusion: Predicted metabolites have logKow values similar or less than their corresponding parent compounds. The bioaccumulation potential of these polyols and their metabolites correlate with their logKow, therefore, the metabolites are not expected to be more bioaccumulative than their parent compounds although some metabolites appear to be generally more reactive and may have higher aquatic toxicity.

Appendix 6: QPRFs of the Seven Representative Molecular Structures

Table 18 Representative structures for propoxylated/ethoxylated ethylenediamine polyol (EDA + EO + PO)
Table 19 Representative structures for sorbitol propoxylated polyol (SOR + PO)
Table 20 Representative structures for propoxylated o-diaminotoluene (TDA + PO)
Table 21 Predicted quantities and logKow values for metabolites of EDA + 1EO + 2PO
Table 22 Predicted quantities and logKow values for metabolites of EDA + 2EO + 4PO (a)
Table 23 Predicted quantities and logKow values for metabolites of EDA + 2EO + 4PO (b)
Table 24 Predicted quantities and logKow values for metabolites of SOR + 6PO (a)
Table 25 Predicted quantities and logKow values for metabolites of SOR + 6PO (b)
Table 26 Predicted quantities and logKow values for metabolites of TDA + 3PO (a)
Table 27 Predicted quantities and logKow values for metabolites of TDA + 3PO (b)
Table 28 Metabolite mode of action as predicted by the Verhaar scheme (modified) and OASIS®

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Schupp, T., Austin, T., Eadsforth, C.V., Bossuyt, B., Shen, S.M., West, R.J. (2017). A Review of the Environmental Degradation, Ecotoxicity, and Bioaccumulation Potential of the Low Molecular Weight Polyether Polyol Substances. In: de Voogt, P. (eds) Reviews of Environmental Contamination and Toxicology Volume 244. Reviews of Environmental Contamination and Toxicology, vol 244. Springer, Cham. https://doi.org/10.1007/398_2017_2

Download citation

Publish with us

Policies and ethics