Skip to main content

How to Adapt Chemical Risk Assessment for Unconventional Hydrocarbon Extraction Related to the Water System

  • Chapter
Reviews of Environmental Contamination and Toxicology Volume 246

Abstract

We identify uncertainties and knowledge gaps of chemical risk assessment related to unconventional drillings and propose adaptations. We discuss how chemical risk assessment in the context of unconventional oil and gas (UO&G) activities differs from conventional chemical risk assessment and the implications for existing legislation. A UO&G suspect list of 1,386 chemicals that might be expected in the UO&G water samples was prepared which can be used for LC-HRMS suspect screening. We actualize information on reported concentrations in UO&G-related water. Most information relates to shale gas operations, followed by coal-bed methane, while only little is available for tight gas and conventional gas. The limited research on conventional oil and gas recovery hampers comparison whether risks related to unconventional activities are in fact higher than those related to conventional activities. No study analyzed the whole cycle from fracturing fluid, flowback and produced water, and surface water and groundwater. Generally target screening has been used, probably missing contaminants of concern. Almost half of the organic compounds analyzed in surface water and groundwater exceed TTC values, so further risk assessment is needed, and risks cannot be waived. No specific exposure scenarios toward groundwater aquifers exist for UO&G-related activities. Human errors in various stages of the life cycle of UO&G production play an important role in the exposure. Neither at the international level nor at the US federal and the EU levels, specific regulations for UO&G-related activities are in place to protect environmental and human health. UO&G activities are mostly regulated through general environmental, spatial planning, and mining legislation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AU:

Australia

BMDL:

Benchmark dose

CA:

Concentration addition

DE:

Germany

DWD:

Drinking Water Directive

EC50:

Half maximal effective concentration

EU:

European Union

GA:

Glutaraldehyde

GWD:

Groundwater Directive

IARC:

International Agency for Research on Cancer

IEA:

International Energy Agency

Koc:

Soil organic carbon-water partition coefficient

LC-HRMS:

Liquid chromatography high resolution mass spectrometry

Log Kow:

n-octanol-water partition coefficient

MS:

Mass Spectrometry

NOAEL:

No adverse effect level

PBT:

Persistent, bioaccumulative and toxic

PEC:

Predicted environmental concentration

PNEC:

Predicted no effect concentration

RfD:

Reference dose

RQ:

Risk quotient

TDS:

Total dissolved solids

TDI:

Tolerable daily intake

TTC:

Threshold of toxicological concern

UK:

United Kingdom

UO&G:

Unconventional oil and gas

USA:

United States of America

WFD:

Water Framework Directive

References

  • Abualfaraj N, Gurian PL, Olson MS (2014) Characterization of Marcellus shale flowback water. Environ Eng Sci 31:514–524

    CAS  Google Scholar 

  • ACGIH Worldwide (2013) Documentation of the TLVs and BEIs with other world wide occupational exposure values. Cincinnati

    Google Scholar 

  • Afenyo M, Khan F, Veitch B, Yang M (2017) A probabilistic ecological risk model for Arctic marine oil spills. J Environ Chem Eng 5:1494–1503

    CAS  Google Scholar 

  • Alawattegama SK, Kondratyuk T, Krynock R, Bricker M, Rutter JK, Bain DJ, Stolz JF (2015) Well water contamination in a rural community in southwestern Pennsylvania near unconventional shale gas extraction. J Environ Sci Health 50:516–528

    CAS  Google Scholar 

  • Alley B, Beebe A, Rodgers J, Castle JW (2011) Chemical and physical characterization of produced waters from conventional and unconventional fossil fuel resources. Chemosphere 85:74–82

    CAS  Google Scholar 

  • Anifowose B, Lawler DM, Van der Horst D, Chapman L (2016) A systematic quality assessment of environmental impact statements in the oil and gas industry. Sci Total Environ 572:570–585

    CAS  Google Scholar 

  • Annevelink MPJA, Meesters JAJ, Hendriks AJ (2016) Environmental contamination due to shale gas development. Sci Total Environ 550:431–438

    CAS  Google Scholar 

  • Arini A, Cavallin JE, Berninger JP, Marfil-Vega R, Mills M, Villeneuve DL, Basu N (2016) In vivo and in vitro neurochemical-based assessments of wastewater effluents from the Maumee River area of concern. Environ Pollut 211:9–19

    CAS  Google Scholar 

  • Atkins JP (2013) Hydraulic fracturing in Poland: a regulatory analysis. Wash Univ Glob Stud Law Rev 12:339–355

    Google Scholar 

  • Baars AJ, Theelen RMC, Janssen PJCM, Hesse JM, Van Apeldoorn ME, Meijerink MCM, Verdam, L, Zeilmaker M (2001) Re-evaluation of human-toxicological maximum permissible risk levels. Report no. 711701025, National Institute of Public Health and the Environment, Bilthoven, The Netherlands

    Google Scholar 

  • Backhaus T, Faust M (2012) Predictive environmental risk assessment of chemical mixtures: a conceptual framework. Environ Sci Technol 46:2564–2573

    CAS  Google Scholar 

  • Barbot E, Vidic NS, Gregory KB, Vidic RD (2013) Spatial and temporal correlation of water quality parameters of produced waters from Devonian-age shale following hydraulic fracturing. Environ Sci Technol 47:2562–2569

    CAS  Google Scholar 

  • Bletsou AA, Jeon J, Hollender J, Archontaki E, Thomaidis NS (2015) Targeted and non-targeted liquid chromatography-mass spectrometric workflows for identification of transformation products of emerging pollutants in the aquatic environment. Trends Anal Chem 66:32–44

    CAS  Google Scholar 

  • Boschee P (2014) Produced and flowback water recycling and reuse: economics, limitations, and technology. Oil Gas Facil 3:16–22

    Google Scholar 

  • Brack W, Dulio V, Ågerstrand M et al (2017) Towards the review of the European Union water framework management of chemical contamination in European surface water resources. Sci Total Environ 576:720–737

    CAS  Google Scholar 

  • Brady WL, Crannell JP (2012) Hydraulic fracturing regulation in the United States: the Laissez-Faire approach of the Federal Government and varying state regulations. Vermont J Environ Law 14:39–70

    Google Scholar 

  • Brand W, de Jong CM, Van der Linden SC et al (2013) Trigger values for investigation of hormonal activity in drinking water and its sources using CALUX bioassays. Environ Int 55:109–118

    CAS  Google Scholar 

  • Brans MC, Van den Brink KM (2014) Schaliegas in publiekrechtelijk kader – Lessen uit de praktijk van conventionele gaswinning. Milieu Recht 32:150–162

    Google Scholar 

  • Burton TG, Rifai HS, Hildenbrand ZL, Carlton DD, Fontenot BE, Schug KA (2016) Elucidating hydraulic fracturing impacts on groundwater quality using a regional geospatial statistical modeling approach. Sci Total Environ 545:114–126

    Google Scholar 

  • Butkovskyi A, Bruning H, Kools SA, Rijnaarts HH, Van Wezel AP (2017) Organic pollutants in shale gas flowback and produced waters: identification, potential ecological impact, and implications for treatment strategies. Environ Sci Technol 51:4740–4754

    CAS  Google Scholar 

  • Camarillo MK, Domen JK, Stringfellow WT (2016) Physical-chemical evaluation of hydraulic fracturing chemicals in the context of produced water treatment. J Environ Manag 183:164–174

    CAS  Google Scholar 

  • Centner TJ, O’Connell LK (2014) Unfinished business in the regulation of shale gas production in the United States. Sci Total Environ 476:359–367

    Google Scholar 

  • Centner TJ, Petetin L (2015) Permitting program with best management practices for shale gas wells to safeguard public health. J Environ Manag 163:174–183

    CAS  Google Scholar 

  • Chapman EC, Capo RC, Stewart BW, Kirby CS, Hammack RW, Schroeder KT, Edenborn HM (2012) Geochemical and strontium isotope characterization of produced waters from Marcellus shale natural gas extraction. Environ Sci Technol 46:3545–3553

    CAS  Google Scholar 

  • Clark CE, Veil JA (2009) Produced water volumes and management practices in the United States. Argonne National Laboratory ANL/EVS/R-09-1. In: Prepared for the U.S. Department of Energy, National Energy Technology Laboratory, September, p 64. http://www.ead.anl.gov/pub/dsp_detail.cfm?PubID=2437

  • COGC (2014) Colorado Oil and Gas Conservation Commission. Inspection./incident inquiry. http://cogcc.state.co.us/. Accessed 4 Jun 2014

  • Cuadrilla (2016) Cuadrilla resources ePortal. https://www.cuadrillaresourceseportal.com/

  • Dahm KG, Guerra KL, Xu P, Drewes JE (2011) Composite geochemical database for coalbed methane produced water quality in the Rocky mountain region. Environ Sci Technol 45:7655–7663

    CAS  Google Scholar 

  • De Jong ER (2013) Regulating uncertain risks in an innovative society: a liability law perspective. In: Hilgendorf E, Günther JP (eds) Robotik und Recht Band I. Nomosverlag, Baden-Baden, pp 163–183

    Google Scholar 

  • De Jong ER (2016) Voorzorgverplichtingen: over aansprakelijkheidsrechtelijke normstelling voor onzekere risico’s. Dissertation, Boomjuridisch, Utrecht University

    Google Scholar 

  • DeGraeve GM, Elder RG, Woods DC, Bergman HL (1982) Effect of naphthalene and benzene on fathead minnows and rainbow trout. Arch Environ Contam Toxicol 11:487–490

    CAS  Google Scholar 

  • DHHS ATSDR (2010) Toxicological profile for Ethylbenzene. US Department of Health and Human Services Agency for Toxic substances and disease registry. http://www.atsdr.cdc.gov/toxprofiles/tp110.pdf

  • ECHA (2017) European Chemicals Agency’s regulated chemicals database. https://echa.europa.eu/information-on-chemicals/registered-substances. Accessed 6 Jul 2017

  • EFSA (2017) European food safety authority database. https://www.efsa.europa.eu/en/data/chemical-hazards-data. Accessed 5 Apr 2017

  • Elliott EG, Trinh P, Ma X, Leaderer BP, Ward MH, Deziel NC (2017) Unconventional oil and gas development and risk of childhood leukemia: assessing the evidence. Sci Total Environ 576:138–147

    CAS  Google Scholar 

  • Escher B, Leusch F (2012) Bioanalytical tools in water quality assessment. IWA Publishing, London

    Google Scholar 

  • Escher BI, Schwarzenbach RP (2002) Mechanistic studies on baseline toxicity and uncoupling of organic compounds as a basis for modeling effective membrane concentrations in aquatic organisms. Aquat Sci 64:20–35

    CAS  Google Scholar 

  • Escher B, Allinson M, Altenburger R et al (2013) Benchmarking organic micropollutants in wastewater, recycled water and drinking water with in vitro bioassays. Environ Sci Technol 48:1940–1956

    Google Scholar 

  • ExxonMobile (2016) ExxonMobile chemical disclosure registry. http://www.erdgassuche-in-deutschland.de/hydraulic_fracturing/frac_massnahmen.html. Accessed 6 Nov 2016

  • Ferrar KJ, Michanowicz DR, Christen CL, Mulcahy N, Malone SL, Sharma RK (2013) Assessment of effluent contaminants from three facilities discharging marcellus shale wastewater to surface waters in pennsylvania. Environ Sci Technol 47:3472–3481

    CAS  Google Scholar 

  • Ferrer I, Thurman EM (2015a) Analysis of hydraulic fracturing additives by LC/Q-TOF-MS. Anal Bioanal Chem 407:6417–6428

    CAS  Google Scholar 

  • Ferrer I, Thurman EM (2015b) Chemical constituents and analytical approaches for hydraulic fracturing waters. Trends Environ Anal Chem 5:18–25

    CAS  Google Scholar 

  • Fleming R, Reins L (2016) Shale gas extraction, precaution and prevention: a conversation on regulatory responses. Energy Res Soc Sci 20:131–141

    Google Scholar 

  • Fontenot BE, Hunt LR, Hildenbrand ZL, Carlton DD Jr, Oka H, Walton JL, Osorio A, Bjorndal B, Hu QH, Schug KA (2013) An evaluation of water quality in private drinking water wells near natural gas extraction sites in the Barnett shale formation. Environ Sci Technol 47:10032–10040. https://doi.org/10.1021/es4011724

    Article  CAS  Google Scholar 

  • Gagnon GA, Krkosek W, Anderson L, McBean E, Mohseni M, Bazri M, Mauro I (2015) Impacts of hydraulic fracturing on water quality: a review of literature, regulatory frameworks and an analysis of information gaps. Environ Rev 24:122–131

    Google Scholar 

  • Geraets D, Reins L (2016) The case of shale gas extraction regulation in light of CETA and TTIP: another example of the frackmentation of international law. Environ Liabil 24:16–25

    Google Scholar 

  • Goldstein BD, Brooks BW, Cohen SD et al (2014) The role of toxicological science in meeting the challenges and opportunities of hydraulic fracturing. Toxicol Sci 139:271–283

    CAS  Google Scholar 

  • Gordalla BC, Ewers U, Frimmel FH (2013) Hydraulic fracturing: a toxicological threat for groundwater and drinking-water? Environ Earth Sci 70:3875–3893

    CAS  Google Scholar 

  • Gouin T, Cousins I, Mackay D (2004) Comparison of two methods for obtaining degradation half-lives. Chemosphere 56:531–535

    CAS  Google Scholar 

  • Gramatica P (2007) Principles of QSAR models validation: internal and external. Mol Inf 26:694–107

    CAS  Google Scholar 

  • Grant MF (2016) A critical assessment of the U.S. Environmental regulation of shale gas development – what can be learned from the U.S. experience? Edinburgh Law School working paper 2016/1

    Google Scholar 

  • Grant CJ, Weimer AB, Marks NK et al (2015) Marcellus and mercury: assessing potential impacts of unconventional natural gas extraction on aquatic ecosystems in northwestern Pennsylvania. J Environ Sci Health 50:482–500

    CAS  Google Scholar 

  • Gregory KB, Vidic RD, Dzombak DA (2011) Water management challenges associated with the production of shale gas by hydraulic fracturing. Elements 7:181–186

    Google Scholar 

  • Gross SA, Avens HJ, Banducci AM, Sahmel J, Panko JM, Tvermoes BE (2013) Analysis of BTEX groundwater concentrations from surface spills associated with hydraulic fracturing operations. J Air Waste Manage Assoc 63:424–432

    CAS  Google Scholar 

  • Harkness JS, Darrah TH, Warner NR et al (2017) The geochemistry of naturally occurring methane and saline groundwater in an area of unconventional shale gas development. Geochim Cosmochim Acta 208:302–334

    CAS  Google Scholar 

  • Harris AE, Hopkinson L, Soeder DJ (2016) Developing monitoring plans to detect spills related to natural gas production. Environ Monit Assess 188:647

    Google Scholar 

  • Hayes T (2009) Sampling and analysis of water streams associated with the development of Marcellus shale gas. Marcellus Shale Initiative Publications Database, 10

    Google Scholar 

  • Hayes T, Severin BF (2012) Barnett and Appalachian Shale water management and reuse technologies. Final Report. RPSEA Contract 08122-05

    Google Scholar 

  • Heilweil VM, Grieve PL, Hynek SA, Brantley SL, Solomon DK, Risser DW (2015) Stream measurements locate thermogenic methane fluxes in groundwater discharge in an area of shale-gas development. Environ Sci Technol 49:4057–4065

    CAS  Google Scholar 

  • Hildenbrand ZL, Carlton Jr DD, Fontenot BE et al (2015) A comprehensive analysis of groundwater quality in the Barnett Shale region. Environ Sci Technol 49:8254–8262

    CAS  Google Scholar 

  • Hladik ML, Focazio MJ, Engle M (2014) Discharges of produced waters from oil and gas extraction via wastewater treatment plants are sources of disinfection by-products to receiving streams. Sci Total Environ 466:1085–1093

    Google Scholar 

  • Hoelzer K, Sumner AJ, Karatum O et al (2016) Indications of transformation products from hydraulic fracturing additives in shale-gas wastewater. Environ Sci Technol 50:8036–8048

    CAS  Google Scholar 

  • Hogenboom AC, Van Leerdam JA, De Voogt P (2009) Accurate mass screening and identification of emerging contaminants in environmental samples by liquid chromatography-hybrid linear ion trap Orbitrap mass spectrometry. J Chromatogr A 1216:510–519

    CAS  Google Scholar 

  • Hollander A, Schoorl M, Van de Meent D (2016) SimpleBox 4.0: improving the model while keeping it simple…. Chemosphere 148:99–107

    CAS  Google Scholar 

  • Howarth RW, Ingraffea A, Engelder T (2011) Natural gas: should fracking stop? Nature 477:271–275

    CAS  Google Scholar 

  • Huang PM (1980) Adsorption processes in soil. In: Hutzinger O (ed) The handbook of environmental chemistry, vol 2 Part A, Reactions and processes. Springer-Verlag, New York, pp 47–59

    Google Scholar 

  • Hug C, Ulrich N, Schulze T, Brack W, Krauss M (2014) Identification of novel micropollutants in wastewater by a combination of suspect and nontarget screening. Environ Pollut 184:25–32

    CAS  Google Scholar 

  • IARC (2017) Monographs on the evaluation of the carcinogenic risk of chemicals to humans. International Agency for Research on Cancer, 1972-PRESENT. http://monographs.iarc.fr/ENG/Classification/index.php. Accessed 5 Apr 2017

  • IEA (2017) International Energy Agency’s unconventional gas production database. https://www.iea.org/ugforum/ugd/

  • Jackson RB, Vengosh A, Darrah TH, Warner NR, Down A, Poreda RJ, Osborn SG, Zhao K, Karr JD (2013a) Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction. Proc Natl Acad Sci 110:11250–11255

    CAS  Google Scholar 

  • Jackson RE, Gorody AW, Mayer B, Roy JW, Ryan MC, Van Stempvoort DR (2013b) Groundwater protection and unconventional gas extraction: the critical need for field-based hydrogeological research. Ground Water 51:488–510

    CAS  Google Scholar 

  • Kahrilas GA, Blotevogel J, Stewart PS, Borch T (2014) Biocides in hydraulic fracturing fluids: a critical review of their usage, mobility, degradation, and toxicity. Environ Sci Technol 49:16–32

    Google Scholar 

  • Kahrilas GA, Blotevogel J, Corrin ER, Borch T (2016) Downhole transformation of the hydraulic fracturing fluid biocide glutaraldehyde: implications for flowback and produced water quality. Environ Sci Technol 50:11414–11423

    CAS  Google Scholar 

  • Kassotis CD, Tillitt DE, Davis JW, Hormann AM, Nagel SC (2013) Estrogen and androgen receptor activities of hydraulic fracturing chemicals and surface and ground water in a drilling-dense region. Endocrinology 155:897–907

    Google Scholar 

  • Kassotis CD, Klemp KC, Vu DC et al (2015) Endocrine-disrupting activity of hydraulic fracturing chemicals and adverse health outcomes after prenatal exposure in male mice. Endocrinology 156:4458–4473

    CAS  Google Scholar 

  • Kassotis CD, Tillitt DE, Lin CH, McElroy JA, Nagel SC (2016a) Endocrine-disrupting chemicals and oil and natural gas operations: potential environmental contamination and recommendations to assess complex environmental mixtures. Environ Health Perspect 124:256–264

    CAS  Google Scholar 

  • Kassotis CD, Bromfield JJ, Klemp KC et al (2016b) Adverse reproductive and developmental health outcomes following prenatal exposure to a hydraulic fracturing chemical mixture in female C57Bl/6 mice. Endocrinology 157:3469–3348

    CAS  Google Scholar 

  • Kevelam J (2015) De juridische bescherming van drinkwaterbronnen bij schaliegaswinning. Dissertation, Utrecht University

    Google Scholar 

  • King GE (2012) Hydraulic fracturing 101: what every representative, environmentalist, regulator, reporter, investor, university researcher, neighbor and engineer should know about estimating frac risk and improving frac performance in unconventional gas and oil wells. In: Society of Petroleum Engineers Hydraulic Fracturing Technology Conference, Texas, pp 1–80

    Google Scholar 

  • Klein W (1989) Mobility of environmental chemicals, including abiotic degradation. In: Bourdeau P, Haines JA, Klein W, Krishna Murti CR (eds) Ecotoxicology and climate: with special reference to hot and cold climates. Wiley, Chichester, pp 65–78

    Google Scholar 

  • Kolkman A, Schriks M, Brand W et al (2013) Sample preparation for combined chemical analysis and in vitro bioassay application in water quality assessment. Environ Toxicol Pharmacol 36:1291–1303

    CAS  Google Scholar 

  • Kondash AJ, Albright E, Vengosh A (2017) Quantity of flowback and produced waters from unconventional oil and gas exploration. Sci Total Environ 574:314–321

    CAS  Google Scholar 

  • Krauss M, Singer H, Hollender J (2010) LC–high resolution MS in environmental analysis: from target screening to the identification of unknowns. Anal Bioanal Chem 397:943–951

    CAS  Google Scholar 

  • Kroes R, Kleiner J, Renwick A (2005) The threshold of toxicological concern concept in risk assessment. Toxicol Sci 86:226–230

    CAS  Google Scholar 

  • Kühne R, Ebert RU, von der Ohe PC, Ulrich N, Brack W, Schüürmann G (2013) Read-across prediction of the acute toxicity of organic compounds toward the water flea daphnia magna. Mol Inf 32:108–120

    Google Scholar 

  • Lange T, Sauter M, Heitfeld M et al (2013) Hydraulic fracturing in unconventional gas reservoirs: risks in the geological system part 1. Environ Earth Sci 70:3839–3853

    CAS  Google Scholar 

  • Lee Y, von Gunten U (2012) Quantitative structure – activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment. Water Res 46:6177–6195

    CAS  Google Scholar 

  • Leendert V, Van Langenhove H, Demeestere K (2015) Trends in liquid chromatography coupled to high-resolution mass spectrometry for multi-residue analysis of organic micropollutants in aquatic environments. Trends Anal Chem 67:192–208

    CAS  Google Scholar 

  • Lester Y, Ferrer I, Thurman EM, Sitterley KA, Korak JA, Aiken G, Linden KG (2015) Characterization of hydraulic fracturing flowback water in Colorado: implications for water treatment. Sci Total Environ 512:637–644

    Google Scholar 

  • Leusch FD, Neale PA, Hebert A, Scheurer M, Schriks MC (2017) Analysis of the sensitivity of in vitro bioassays for androgenic, progestagenic, glucocorticoid, thyroid and estrogenic activity: suitability for drinking and environmental waters. Environ Int 99:120–130

    CAS  Google Scholar 

  • Mackay D (1980) Solubility, partition coefficients, volatility, and evaporation rates. In: Hutzinger O (ed) A handbook of environmental chemistry, vol 1. Part A Reactions and Processes. Springer-Verlag, New York, pp 31–45

    Google Scholar 

  • Mackay D, Hughes L, Powell DE, Kim J (2014) An updated Quantitative Water Air Sediment Interaction (QWASI) model for evaluating chemical fate and input parameter sensitivities in aquatic systems: application to D5 (decamethylcyclopentasiloxane) and PCB-180 in two lakes. Chemosphere 111:359–365

    CAS  Google Scholar 

  • Maguire-Boyle SJ, Barron AR (2014) Organic compounds in produced waters from shale gas wells. Environ Sci Processes Impacts 16:2237–2248

    CAS  Google Scholar 

  • Malaj E, Peter C, Grote M, Kühne R et al (2014) Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. Proc Natl Acad Sci 111:9549–9554

    CAS  Google Scholar 

  • Maloney KO, Baruch-Mordo S, Patterson LA, Nicot JP, Entrekin SA, Fargione JE et al (2017) Unconventional oil and gas spills: materials, volumes, and risks to surface waters in four states of the US. Sci Total Environ 581:369–377

    Google Scholar 

  • Maule AL, Makey CM, Benson EB, Burrows IJ, Scammell MK (2013) Disclosure of hydraulic fracturing fluid chemical additives: analysis of regulations. New Solut 23:167–187

    Google Scholar 

  • Mellert W, Deckardt K, Kaufmann W, Van Ravenzwaay B (2007) Ethylbenzene: 4-and 13-week rat oral toxicity. Arch Toxicol 81:361–370

    CAS  Google Scholar 

  • Meng Q (2015) Spatial analysis of environment and population at risk of natural gas fracking in the state of Pennsylvania, USA. Sci Total Environ 515:198–206

    Google Scholar 

  • Mons MN, Heringa MB, Van Genderen J (2013) Use of the Threshold of Toxicological Concern (TTC) approach for deriving target values for drinking water contaminants. Water Res 47:1666–1678

    CAS  Google Scholar 

  • Montgomery CT, Smith MB (2010) Hydraulic fracturing: history of an enduring technology. J Pet Technol 62:26

    CAS  Google Scholar 

  • Müller A, Schulz W, Ruck WK, Weber WH (2011) A new approach to data evaluation in the non-target screening of organic trace substances in water analysis. Chemosphere 85:1211–1219

    Google Scholar 

  • Murk AJ, Legler J, Van Lipzig MM et al (2002) Detection of estrogenic potency in wastewater and surface water with three in vitro bioassays. Environ Toxicol Chem 21:16–23

    CAS  Google Scholar 

  • NAM (2016) Nederlandse aardoliematschappij chemical disclosure database. http://www.nam.nl/nl/downloads/information-fracking.html. Accessed 12 Jun 2016

  • Navarro HA, Price CJ, Marr MC, Myers CB, Heindel JJ (1992) Final report on the developmental toxicity of naphthalene (CAS No. 91-20-3) in New Zealand white rabbits on gestational days 6 through 19. Chemistry and Life Sciences Research Triangle Institute. NTIS Technical Report No PB-92-219831, Durham. https://www.osti.gov/scitech/biblio/6992005

  • Nelson J, Bishay F, Van Roodselaar A, Ikonomou M, Law FC (2007) The use of in vitro bioassays to quantify endocrine disrupting chemicals in municipal wastewater treatment plant effluents. Sci Total Environ 374:80–90

    CAS  Google Scholar 

  • NGS (2016) Natural gas from shale hydraulic fracturing fluid and additive component transparency service. http://www.ngsfacts.org/findawell/. Accessed 6 Oct 2016

  • NRC (2014) National response centre. http://www.nrc.uscg.mil/. Accessed 4 Jun 2014

  • NTP (1990) Toxicology and carcinogenesis studies of Toluene (CAS No. 108-88-3) in F344/N Rats and B6C3F1 Mice (Inhalation Studies). National Toxicology Program Technical Report Series 371:1. https://ntp.niehs.nih.gov/ntp/htdocs/lt_rpts/tr371.pdf

  • O’Malley D, Karra S, Currier RP, Makedonska N, Hyman JD, Viswanathan HS (2015) Where does water go during hydraulic fracturing? Ground Water 54:488–497

    Google Scholar 

  • OCD (2014) State of Mexico oil conservation division. Lozing search. https://wwwapps.emnrd.state.nm.us/ocd/ocdpermitting/Data/Incidents/SpillsearchResults.aspx. Accessed 4 Jun 2014

  • Olsson O, Weichgrebe D, Rosenwinkel KH (2013) Hydraulic fracturing wastewater in Germany: composition, treatment, concerns. Environ Earth Sci 70:3895–3906

    CAS  Google Scholar 

  • OPPPW (2016) The polish exploration and production industry organization chemical disclosure database. http://www.opppw.pl/en/fracturing_fluid_composition/23. Accessed 6 Oct 2016

  • Orem W, Tatu C, Varonka M (2014) Organic substances in produced and formation water from unconventional natural gas extraction in coal and shale. Int J Coal Geol 126:20–31

    CAS  Google Scholar 

  • Osborn SG, Vengosh A, Warner NR, Jackson RB (2011) Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. Proc Natl Acad Sci 108:8172–8176

    CAS  Google Scholar 

  • PADEP (2014) Pennsylvania Department of Environmental Protection OC compliance. http://www.depreportingservices.state.pa.us/ReportServer/Pages/ReportViewer.aspx?/Oil_Gas/OG_Compliance. Accessed 4 Jun 2014

  • Patterson LA, Konschnik KE, Wiseman H et al (2017) Unconventional oil and gas spills: risks, mitigation priorities, and state reporting requirements. Environ Sci Technol 51:2563–2573

    CAS  Google Scholar 

  • Pereira E, Reins L, Zhang L, Costa H, Nace J (2016) Regulatory and contractual challenges for unconventional resources: an international perspective. UEF Energy Law Rev 1:1–38

    Google Scholar 

  • Perry SL (2012) Environmental reviews and case studies: addressing the societal costs of unconventional oil and gas exploration and production: a framework for evaluating short-term, future, and cumulative risks and uncertainties of hydrofracking. Environ Pract 14:352–365

    Google Scholar 

  • Polishchuk K (2017) Shale gas regulation in the USA, Poland and Ukraine: managing groundwater contamination risks. Dissertation, Utrecht University

    Google Scholar 

  • Poulsen A, Chapman H, Leusch F, Escher B (2011) Application of bioanalytical tools for water quality assessment. Urban Water Security Research Alliance Technical Report No 41, Brisbane. https://www.researchgate.net/publication/267824499_Application_of_Bioanalytical_Tools_for_Water_Quality_Assessment

  • Preston TM, Chesley-Preston TL (2015) Risk assessment of brine contamination to aquatic resources from energy development in glacial drift deposits: Williston Basin, USA. Sci Total Environ 508:534–545

    CAS  Google Scholar 

  • Prpich G, Coulon F, Anthony EJ (2016) Review of the scientific evidence to support environmental risk assessment of shale gas development in the UK. Sci Total Environ 563:731–740

    Google Scholar 

  • Rahm BG, Riha SJ (2012) Toward strategic management of shale gas development: regional, collective impacts on water resources. Environ Sci Pol 17:12–23

    Google Scholar 

  • Randall A (2011) Risk and precaution. Cambridge University Press, Cambridge

    Google Scholar 

  • Reemtsma T, Berger U, Arp HPH, Gallard H, Knepper TP, Neumann M, Quintana JB, Voogt PD (2016) Mind the Gap: Persistent and Mobile Organic Compounds: Water Contaminants that Slip Through. Environ Sci Technol 50:10308–10315

    CAS  Google Scholar 

  • Reins L (2014a) European minimum principles for shale gas: preliminary insights with reference to the precautionary principle. Environ Liabil 22:16–27

    Google Scholar 

  • Reins L (2014b) A research agenda for shale gas: challenges to a coherent regulation in the European Union. J Renew Energy Law Policy 5:167–171

    Google Scholar 

  • Reins L (2017) Regulating shale gas: the challenge of coherent environmental and energy regulation. Edward Elgar Publishing, Cheltenham

    Google Scholar 

  • Riedl J, Rotter S, Faetsch S, Schmitt-Jansen M, Altenburger R (2013) Proposal for applying a component-based mixture approach for ecotoxicological assessment of fracturing fluids. Environ Earth Sci 70:3907–3920

    CAS  Google Scholar 

  • Roberson TW (2012) Environmental concerns of hydraulically fracturing a natural gas well. Utah Environ Law Rev 12:67–136

    Google Scholar 

  • RRC (2014) Railroad commission of Texas loss report database. http://www.rrc.state.tx.us/oil-gas/compliance-enforcement/h-8/

    Google Scholar 

  • SCHER, SCENIHR, SCCS (2012) Opinion on the toxicity and assessment of chemical mixtures. Scientific committees on health and environmental risks (SCHER), Emerging and Newly Identified Health Risks (SCENIHR) and Consumer Safety (SCCS), European Commission. http://ec.europa.eu/health/scientific_committees/environmental_risks/docs/scher_o_155.pdf

  • Schnoor JL (1996) Environmental modeling: fate and transport of pollutants in water, air, and soil. Wiley, New York

    Google Scholar 

  • Scholz S, Sela E, Blaha L (2013) A European perspective on alternatives to animal testing for environmental hazard identification and risk assessment. Regul Toxicol Pharmacol 67:506–530

    Google Scholar 

  • Schriks M, Heringa MB, Van der Kooi MM, de Voogt P, Van Wezel AP (2010a) Toxicological relevance of emerging contaminants for drinking water quality. Water Res 44:461–476

    CAS  Google Scholar 

  • Schriks M, van Leerdam JA, Van der Linden SC, Van der Burg B, Van Wezel AP, de Voogt P (2010b) High-resolution mass spectrometric identification and quantification of glucocorticoid compounds in various wastewaters in The Netherlands. Environ Sci Technol 44:4766–4774

    CAS  Google Scholar 

  • Schymanski EL, Singer HP, Longrée P et al (2014a) Strategies to characterize polar organic contamination in wastewater: exploring the capability of high resolution mass spectrometry. Environ Sci Technol 48:1811–1181

    CAS  Google Scholar 

  • Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, Hollender J (2014b) Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol 48:2097–2098

    CAS  Google Scholar 

  • Schymanski EL, Singer HP, Slobodnik J (2015) Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis. Anal Bioanal Chem 407:6237–6255

    CAS  Google Scholar 

  • Shonkoff SB, Hays J, Finkel ML (2014) Environmental public health dimensions of shale and tight gas development. Environ Health Perspect 122:787

    Google Scholar 

  • Sjerps RM, Vughs D, Van Leerdam JA, ter Laak TL, Van Wezel AP (2016) Data-driven prioritization of chemicals for various water types using suspect screening LC-HRMS. Water Res 93:254–264

    CAS  Google Scholar 

  • Smit CE, Verbruggen EMJ (2012) Environmental risk limits for ethyl-benzene and tributylphosphate in water: a proposal for water quality standards in accordance with the Water Framework Directive. RIVM letter report 601714019. http://rivm.openrepository.com/rivm/handle/10029/260138

  • Soeder DJ (2015) Adventures in groundwater monitoring: why has it been so difficult to obtain groundwater data near shale gas wells? Environ Geosci 22:139–148

    Google Scholar 

  • Soeder DJ, Sharma S, Pckney N, Hopkinson L, Dilmore R, Kutchko B, Stewart B, Carter K, Hakala A, Capo R (2014) An approach for assessing engineering risk from shale gas wells in the United States. Int J Coal Geol 1226:4–19

    Google Scholar 

  • Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10:52–67

    CAS  Google Scholar 

  • Stringfellow WT, Domen JK, Camarillo MK, Sandelin WL, Borglin S (2014) Physical, chemical, and biological characteristics of compounds used in hydraulic fracturing. J Hazard Mater 275:37–54

    CAS  Google Scholar 

  • Strong LC, Gould T, Kasinkas L, Sadowsky MJ, Aksan A, Wackett LP (2013) Biodegradation in waters from hydraulic fracturing: chemistry, microbiology, and engineering. J Environ Eng 140:B4013001

    Google Scholar 

  • Tang JY, Taulis M, Edebeli J, Leusch FD, Jagals P, Jackson GP, Escher BI (2014) Chemical and bioanalytical assessment of coal seam gas associated water. Environ Chem 12:267–285

    Google Scholar 

  • ter Heege JH, Griffioen J, Schavemaker YA, Boxem TAP (2014) Inventarisatie van technologieën en ontwikkelingen voor het verminderen van (rest) risico’s bij schaliegaswinning, No. TNO-2014-R10919. TNO. https://repository.tudelft.nl/view/tno/uuid:d3f72f6d-c669-4e8a-b4aa-fa87e399bf00/

  • Thacker JB, Carlton DD, Hildenbrand ZL, Kadjo AF, Schug KA (2015) Chemical analysis of wastewater from unconventional drilling operations. Water 7:1568–1579

    CAS  Google Scholar 

  • Theodori GL, Luloff AE, Willits FK, Burnett DB (2014) Hydraulic fracturing and the management, disposal, and reuse of frac flowback waters: views from the public in the Marcellus Shale. Energy Res Soc Sci 2:66–74

    Google Scholar 

  • Torres L, Yadav OP, Khan E (2016) A review on risk assessment techniques for hydraulic fracturing water and produced water management implemented in onshore unconventional oil and gas production. Sci Total Environ 539:478–493

    CAS  Google Scholar 

  • US EPA (2015) Assessment of the potential impacts of hydraulic fracturing for oil and gas on drinking water resources. Office of Research and Development, US Environmental Protection Agency, Washington

    Google Scholar 

  • US EPA (2016) Hydraulic fracturing for oil and gas: impacts from the hydraulic fracturing water cycle on drinking water resources in the United States. Office of Research and Development, U.S. Environmental Protection Agency, Washington

    Google Scholar 

  • US EPA Ecotox (2017) U.S. Environmental Protection Agency’s Ecotox database. https://cfpub.epa.gov/ecotox. Accessed 6 Apr 2017

  • US EPA IRIS (2017) U.S. Environmental Protection Agency’s integrated risk information system. https://www.epa.gov/iris. Accessed 6 Apr 2017

  • US Fracfocus (2016) https://fracfocus.org/chemical-use/chemicals-public-disclosure. Accessed 5 Feb 2016

  • Van Herwijnen R, Vos JH (2009) Environmental risk limits for benzene, C10-13 alkyl derivs (LAB). RIVM Report No 601782016. http://www.rivm.nl/dsresource?objectid=a837022c-94e9-481e-8d32b6cd3104c826&type=org&disposition=inline

  • Van Wezel AP, Ter Laak TL, Fischer A, Bäuerlein PS, Munthe J, Posthuma L (2017) Mitigation options for chemicals of emerging concern in surface waters; operationalising solutions-focused risk assessment. Environ Sci Water Res Technol 3:403–414

    Google Scholar 

  • Venkatesan AK, Halden RU (2015) Effective strategies for monitoring and regulating chemical mixtures and contaminants sharing pathways of toxicity. Int J Environ Res Public Health 12:10549–10557

    CAS  Google Scholar 

  • Vidic RD, Brantley SL, Vandenbossche JM, Yoxtheimer D, Abad JD (2013) Impact of shale gas development on regional water quality. Science 340:6134

    Google Scholar 

  • Vos A (2014) Shale gas extraction: in line with the general (environmental) principles of Union and Dutch law? Dissertation, Utrecht University

    Google Scholar 

  • Wachinger G, Renn O, Begg C, Kuhlicke C (2013) The risk perception paradox implications for governance and communication of natural hazards. Risk Anal 33:1049–1065

    Google Scholar 

  • Warner NR, Christie CA, Jackson RB, Vengosh A (2013a) Impacts of shale gas wastewater disposal on water quality in western Pennsylvania. Environ Sci Technol 47:11849–11857

    CAS  Google Scholar 

  • Warner NR, Kresse TM, Hays PD, Down A, Karr JD, Jackson RB, Vengosh A (2013b) Geochemical and isotopic variations in shallow groundwater in areas of the Fayetteville Shale development, north-central Arkansas. Appl Geochem 35:207–220

    CAS  Google Scholar 

  • Webb E, Bushkin-Bedient S, Cheng A, Kassotis CD, Balise V, Nagel SC (2014) Developmental and reproductive effects of chemicals associated with unconventional oil and natural gas operations. Rev Environ Health 29:307–318

    CAS  Google Scholar 

  • Werner AK, Vink S, Watt K, Jagals P (2015) Environmental health impacts of unconventional natural gas development: a review of the current strength of evidence. Sci Total Environ 505:1127–1141

    CAS  Google Scholar 

  • Westerhoff P, Yoon Y, Snyder S, Wert E (2005) Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ Sci Technol 39:6649–6663

    CAS  Google Scholar 

  • Yost EE, Stanek J, DeWoskin RS, Burgoon LD (2016) Estimating the potential toxicity of chemicals associated with hydraulic fracturing operations using quantitative structure-activity relationship modeling. Environ Sci Technol 50:7732–7742

    CAS  Google Scholar 

  • Zhang M, Wang Y, Wang Q, Yang J, Yang D, Liu J, Li J (2010) Involvement of mitochondria-mediated apoptosis in ethylbenzene-induced renal toxicity in rat. Toxicol Sci 115:295–303

    CAS  Google Scholar 

  • Ziemkiewicz PF, Quaranta JD, Darnell A, Wise R (2014) Exposure pathways related to shale gas development and procedures for reducing environmental and public risk. J Nat Gas Sci Eng 16:77–84

    Google Scholar 

  • Zoveidavianpoor M, Samsuri A, Shadizadeh SR (2012) Overview of environmental management by drill cutting re-injection through hydraulic fracturing in upstream oil and gas industry. In: Curkovic S (ed) Sustainable development – authoritative and leading edge content for environmental management. InTech. https://www.intechopen.com/books/sustainable-development-authoritative-and-leading-edge-content-for-environmental-management/overview-of-environmental-management-by-drill-cutting-re-injection-through-hydraulic-fracturing-in-u

    Google Scholar 

Download references

Acknowledgments

This work is part of the research program “Shale Gas & Water” with project number 859.14.001, which is financed by the Netherlands Organization for Scientific Research (NWO) and the drinking water companies Brabant Water, Oasen, and Waterleiding Maatschappij Limburg.

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann-Hélène Faber .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Online Resource 1

■ (XLSX 369 kb)

Online Resource 2

■ (XLSX 2696 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Faber, AH. et al. (2017). How to Adapt Chemical Risk Assessment for Unconventional Hydrocarbon Extraction Related to the Water System. In: de Voogt, P. (eds) Reviews of Environmental Contamination and Toxicology Volume 246. Reviews of Environmental Contamination and Toxicology, vol 246. Springer, Cham. https://doi.org/10.1007/398_2017_10

Download citation

Publish with us

Policies and ethics