Advertisement

Positron Emission Profiling: a Study of Hydrocarbon Diffusivity in MFI Zeolites

Chapter
Part of the Molecular Sieves book series (SIEVES, volume 7)

Abstract

Zeolites are of prime importance to the petrochemical industry as catalysts for hydrocarbon conversion. In their molecule-sized micropores, hydrocarbon diffusion plays a pivotal role in the final catalytic performance. Here, we present the results of Positron Emission Profiling experiments with labeled hydrocarbons in zeolites with the MFI morphology. Single-component self-diffusion coefficients of hexanes in silicalite-1 and its acidic counterpart H-ZSM-5 are determined. For the first time, self-diffusion coefficients of n-pentane and n-hexane in mixtures are studied. This shows that Positron Emission Profiling is a powerful technique for in situ investigations of the adsorptive and diffusive properties of hydrocarbons in zeolites. The diffusion of hydrocarbons in medium-pore zeolites is determined by a complex interplay of factors such as the loading, the temperature, the preference for certain pore locations, the interactions with other hydrocarbon molecules of the same type or of other types and the presence of acid protons. In the diffusion of mixtures, pore blockage by one of the components might occur, thus strongly decreasing the diffusivity of the faster diffusing hydrocarbon.

Keywords

Acid Site Apparent Activation Energy Selective Catalytic Reduction Repulsive Interaction Zeolite Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baerlocher C, Meier WM, Olson DH (2001) Atlas of zeolite framework types, 5th ed. Elsevier, Amsterdam, The Netherlands Google Scholar
  2. 2.
    Jost W (1960) Diffusion in solids, liquids and gases. Academic Press, New York Google Scholar
  3. 3.
    Kärger J, Ruthven DM (1992) Diffusion in zeolites and other microporous solids. John Wiley & Sons, Inc, New York Google Scholar
  4. 4.
    Chen NY, Degnan TF Jr, Smith CM (1994) Molecular transport and reaction in zeolites design and application of shape selective catalysis. VCH Publishers, New York Google Scholar
  5. 5.
    Benes NE, Verweij H (1999) Langmuir 15:8292 CrossRefGoogle Scholar
  6. 6.
    Kauzmann W (1966) Kinetic theory of gases. Addison-Wesley, Reading Google Scholar
  7. 7.
    Post MFM (1991) In: Van Bekkum H, Flanigen EM, Jansen JC (eds) Introduction to zeolite science and practice. Elsevier, Amsterdam, pp 391–443 CrossRefGoogle Scholar
  8. 8.
    Post MFM (1991) Stud Surf Sci Catal 58:391 CrossRefGoogle Scholar
  9. 9.
    Wakao N, Kaguei S (1982) Heat and mass transfer in packed beds. Gordon and Breach Science, London Google Scholar
  10. 10.
    Weisz PB (1973) Chem Tech 3:498 Google Scholar
  11. 11.
    Fick A (1855) Ann Phys 94:59 Google Scholar
  12. 12.
    Barrer RM, Jost W (1949) Trans Faraday Soc 45:928 CrossRefGoogle Scholar
  13. 13.
    Einstein A (1905) Ann Phys 17:549 CrossRefGoogle Scholar
  14. 14.
    Paschek D, Krishna R (2001) Chem Phys Lett 333:278 CrossRefGoogle Scholar
  15. 15.
    Skoulidas AI, Sholl DS (2001) J Phys Chem B 105:3151 CrossRefGoogle Scholar
  16. 16.
    Barrer RM (1941) Trans Faraday Soc 37:590 CrossRefGoogle Scholar
  17. 17.
    Theodorou DN, Wei J (1983) J Catal 83:205 CrossRefGoogle Scholar
  18. 18.
    Tsikoyiannis J, Wei J (1991) Chem Eng Sci 46:233 CrossRefGoogle Scholar
  19. 19.
    Coppens MO, Bell AT, Chakraborty AK (1998) Chem Eng Sci 53:2053 CrossRefGoogle Scholar
  20. 20.
    Kärger J, Pfeifer H (1987) Zeolites 7:90 CrossRefGoogle Scholar
  21. 21.
    Xiao J, Wei J (1992) Chem Eng Sci 47:1123 CrossRefGoogle Scholar
  22. 22.
    Riekert L (1970) Adv Catal 21:281 CrossRefGoogle Scholar
  23. 23.
    Koriabkina AO, De Jong AM, Schuring D, Van Santen RA (2002) J Phys Chem B 106:9559 CrossRefGoogle Scholar
  24. 24.
    Haynes HW, Sarma PN (1973) AIChE J 19:1043 CrossRefGoogle Scholar
  25. 25.
    Noordhoek NJ, Van Ijzendoorn NJ, Anderson BG, De Gauw FJ, Van Santen RA, De Voigt MJA (1998) Ind Eng Chem Res 37:825 CrossRefGoogle Scholar
  26. 26.
    Mangnus AVG (2000) A detection system for Positron Emission Profiling, Ph.D. thesis. Eindhoven University of Technology, Eindhoven, The Netherlands Google Scholar
  27. 27.
    Ferrieri RA, Wolf AP (1984) J Phys Chem 88:2256 CrossRefGoogle Scholar
  28. 28.
    Ferrieri RA, Wolf AP (1984) J Phys Chem 88:5456 CrossRefGoogle Scholar
  29. 29.
    Baltensperger U, Ammann M, Bochert UK, Eichler B, Gäggeler HW, Jost DT, Kovacs JA, Türler A, Sherer UW, Baiker A (1993) J Phys Chem 97:12325 CrossRefGoogle Scholar
  30. 30.
    Hawkesworth MR, Parker DJ, Fowles P, Crilly JF, Jefferies NL, Jonkers G (1991) Nucl Instrum Methods A310:423 Google Scholar
  31. 31.
    Hensel F (1996) Institut Sicherheitsforschung, Forschungszentrum Rossendorf, Dresden D-01314, Germany. FZR, FZR-152, p 12 Google Scholar
  32. 32.
    Jonkers G, Vonkeman KA, Van der Wal SWA, Van Santen RA (1992) Nature 355:63 CrossRefGoogle Scholar
  33. 33.
    Jonkers G, Vonkeman KA, Van der Waal SWA (1993) In: Weijnen MPC, Drinkenburg AAH (eds) Precision Process Technology. Kluwer Academic Publishers, The Netherlands, p 533 Google Scholar
  34. 34.
    Mangnus AVG, Van Ijzendoorn LJ, De Goeij JJM, Cunningham RH, Van Santen RA, De Voigt MJA (1995) Nucl Instrum Methods B99:649 Google Scholar
  35. 35.
    Schumacher RR, Anderson BG, Noordhoek NJ, De Gauw FJMM, De Jong AM, De Voigt MJA, Van Santen RA (2001) Microporous Mesoporous Mater 35–36:315 Google Scholar
  36. 36.
    Noordhoek NJ, Schuring D, De Gauw FJMM, Anderson BG, De Jong AM, De Voigt MJA, Van Santen RA (2002) Ind Eng Chem Res 41:1973 CrossRefGoogle Scholar
  37. 37.
    Cunningham RH, Mangnus AVG, Van Grondelle J, Van Santen RA (1996) J Mol Catal A 107:153 CrossRefGoogle Scholar
  38. 38.
    Rosen JB (1952) J Chem Phys 20:387 CrossRefGoogle Scholar
  39. 39.
    Nijhuis TA, Van den Broeke LJP, Linders MJG, Van de Graaf JM, Kapteijn F, Makkee M, Moulijn JA (1999) Chem Eng Sci 54:4423 CrossRefGoogle Scholar
  40. 40.
    Hong U, Kärger J, Kramer R, Pfeifer H, Seiffert G, Müller U, Unger KK, Lück HB, Ito T (1991) Zeolites 11:816 CrossRefGoogle Scholar
  41. 41.
    Schiesser WE (1991) The Numerical Method of Lines: Integration of Partial Differential Equations. Academic Press, San Diego Google Scholar
  42. 42.
    Marquardt D (1963) J Appl Math 11:431 Google Scholar
  43. 43.
    Atkins PW, De Paula J (2002) Physical Chemistry, 7th ed. Oxford University Press, Oxford, United Kingdom, pp 822–824 Google Scholar
  44. 44.
    Vlugt TJH, Krishna R, Smit B (1999) J Phys Chem B 103:1102 CrossRefGoogle Scholar
  45. 45.
    Zhu W, Kapteijn F, Moulijn JA (2001) Microporous Mesoporous Mater 47:157 CrossRefGoogle Scholar
  46. 46.
    June RL, Bell AT, Theodorou DN (1992) J Phys Chem B 96:1051 CrossRefGoogle Scholar
  47. 47.
    June RL, Bell AT, Theodorou DN (1990) J Phys Chem B 94:1508 CrossRefGoogle Scholar
  48. 48.
    Zhu W, Kapteijn F, Van der Linden B, Moulijn JA (2001) Phys Chem Chem Phys 3:1755 CrossRefGoogle Scholar
  49. 49.
    Calero S, Smit B, Krishna R (2001) J Catal 202:395 CrossRefGoogle Scholar
  50. 50.
    Schuring D, Koriabkina AO, De Jong AM, Smit B, Santen RA (2001) J Phys Chem B 105:7690 CrossRefGoogle Scholar
  51. 51.
    Breck DW (1974) Zeolite Molecular Sieves. John Wiley, New York Google Scholar
  52. 52.
    Snurr RQ, Kärger J (1997) J Phys Chem B 101:64 CrossRefGoogle Scholar
  53. 53.
    Schuring D, Jansen APJ, Van Santen RA (2000) J Phys Chem B 104:941 CrossRefGoogle Scholar
  54. 54.
    Jost S, Bar NK, Fritzsche S, Haberlandt R, Kärger J (1998) J Phys Chem B 102:6375 CrossRefGoogle Scholar
  55. 55.
    Masuda T, Fujikata Y, Ikeda H, Hashimoto K (2000) Microporous Mesoporous Mater 38:323 CrossRefGoogle Scholar
  56. 56.
    Gergidis LN, Theodorou DN (1999) J Phys Chem B 103:3380 CrossRefGoogle Scholar
  57. 57.
    Nivarthi SS, Davis HT, McCormick AV (1995) Chem Eng Sci 50:3217 CrossRefGoogle Scholar
  58. 58.
    Förste C, Germanus A, Kärger J, Pfeifer H, Caro J, Pilz W, Zikánová A (1987) J Chem Soc Faraday Trans 83:2301 CrossRefGoogle Scholar
  59. 59.
    Eder F (1996) Thermodynamics and siting of alkane sorption in molecular sieves, Ph.D.Thesis. University of Twente, The Netherlands Google Scholar
  60. 60.
    Wu P, Debebe A, Ma Y (1983) Zeolites 3:118 CrossRefGoogle Scholar
  61. 61.
    Anderson J, Foger K, Mole T, Rajadhyaksha R, Sanders J (1979) J Catal 58:114 CrossRefGoogle Scholar
  62. 62.
    Valyon J, Onyestyak G, Rees LVC (2000) In: Proc of 2nd Pac Basin Conf, p 482 Google Scholar
  63. 63.
    Zikanova A, Bülow M, Schlodder H (1987) Zeolites 7:11 CrossRefGoogle Scholar
  64. 64.
    Shen D, Rees LVC (1991) Zeolites 11:666 CrossRefGoogle Scholar
  65. 65.
    Masuda T, Fujikata Y, Nishida T, Hashimoto K (1998) Microporous Mesoporous Mater 23:157 CrossRefGoogle Scholar
  66. 66.
    Jost S, Bar NK, Fritzshe S, Haberlandt R, Kärger J (1999) In: Treacy MMC, Marcus BK, Bisher ME, Higgins JB (eds) Proc 12th Int Zeolite Conf, Baltimore, USA, July 5–10, 1998. Materials Research Society, Warrendale PA, USA, p 149 Google Scholar
  67. 67.
    Bülow M, Schodder H, Rees LVC, Caro J, Richards R (1986) In: Murakami Y, Iijima A, Ward JW (eds) New developments in zeolite science and technology; Proc. 7th Int Zeolite Conf, Tokyo, Japan, 1986. Elsevier, Amsterdam, pp 579–586 Google Scholar
  68. 68.
    Bülow M, Schodder H, Rees LVC, Caro J, Richards R (1986) Stud Surf Sci Catal 28:579 CrossRefGoogle Scholar
  69. 69.
    Hashimoto K, Masuda T, Murakami N (1991) In: Jacobs PA, Jäger NI, Kubelkova L, Wichterlova B (eds) Zeolite Chemistry and Catalysis; Proc Int Symp, Prague, Czechoslovakia, September 8–13, 1991. Elsevier, Amsterdam, p 477 Google Scholar
  70. 70.
    Hermann M, Niessen W, Karge HG (1996) In: LeVan MD (ed) Fundamentals of adsorption; Proc 5th Int Conf Fundamentals of adsorption, Asilomar Pacific Grove, California, USA, May 13–18, 1995. Kluwer Acad Publ Norwell, Mas, pp 377–384 Google Scholar
  71. 71.
    Hermann M, Niessen W, Karge HG (1995) In: Beyer HK, Karge HG, Kiricsi I, Nagy JB (eds) Proc Int Symp Catalysis by Microporous Materials, Elsevier, Amsterdam, pp 131–138 Google Scholar
  72. 72.
    Hermann M, Niessen W, Karge HG (1995) Stud Surf Sci Catal 94:131 CrossRefGoogle Scholar
  73. 73.
    Van-Den-Begin N, Rees LVC, Caro J, Bülow M (1989) Zeolites 9:287 CrossRefGoogle Scholar
  74. 74.
    Eic M, Ruthven DM (1989) In: Jacobs PA, Van Santen RA (eds) Zeolites: Facts, figures, future; Proc. 8th Int Zeolite Conf, Amsterdam, The Netherlands, 1989. Elsevier, Amsterdam, p 897 Google Scholar
  75. 75.
    Eic M, Ruthven DM (1989) Stud Surf Sci Catal 49:897 CrossRefGoogle Scholar
  76. 76.
    Millot B, Methivier A, Jobic H, Moueddeb H, Dalmon JA (2000) Microporous Mesoporous Mater 38:85 CrossRefGoogle Scholar
  77. 77.
    Cavalcante CL, Ruthven DM (1995) Ind Eng Chem Res 34:185 CrossRefGoogle Scholar
  78. 78.
    Xiao J, Wei J (1992) Chem Eng Sci 47:1143 CrossRefGoogle Scholar
  79. 79.
    Keipert OP, Baerns M (1998) Chem Eng Sci 53:3623 CrossRefGoogle Scholar
  80. 80.
    Coppens MO, Bell AT, Chakraborty AK (1999) Chem Eng Sci 54:3455 CrossRefGoogle Scholar
  81. 81.
    Koriabkina AO, De Jong AM, Hensen EJM, Van Santen RA (2004) Microporous Mesoporous Mat 77:119 CrossRefGoogle Scholar
  82. 82.
    Paschek D, Krishna R (2001) Chem Phys Lett 342:148 CrossRefGoogle Scholar
  83. 83.
    Trout BL, Chakraborty AK, Bell AT (1997) Chem Eng Sci 52:2265 CrossRefGoogle Scholar
  84. 84.
    Krishna R, Paschek D (2002) Chem Eng J 85:715 CrossRefGoogle Scholar
  85. 85.
    Smit B, Maesen T (1995) Nature 374:42 Google Scholar
  86. 86.
    Heink W, Kärger J, Pfeifer H, Datema KP, Nowak AK (1992) J Chem Soc Faraday Trans 88:3505 CrossRefGoogle Scholar
  87. 87.
    Datema KP, Den Ouden CJJ, Ylstra WD, Kuipers HPCE, Post MFM, Kärger J (1991) J Chem Soc Faraday Trans 87:1935 CrossRefGoogle Scholar
  88. 88.
    Hayhurst DT, Paravar A (1988) Zeolites 8:27 CrossRefGoogle Scholar
  89. 89.
    Song L, Rees LVC (1999) In: Treacy MMC, Marcus BK, Bisher ME, Higgins JB (eds) Proc 12th Int Zeolite Conf, Baltimore, USA, July 5–10, 1998. Materials Research Society, Warrendale PA, USA, p 67 Google Scholar
  90. 90.
    Talu O, Sun MS, Shah DB (1998) AIChE J 44:681 CrossRefGoogle Scholar
  91. 91.
    Van de Graaf JM, Kapteijn F, Moulijn JA (2000) Microporous Mesoporous Mater 35–36:267 CrossRefGoogle Scholar
  92. 92.
    Nijhuis TA, Van den Broeke LJP, Van de Graaf JM, Kapteijn F, Makkee M, Moulijn JA (1997) Chem Eng Sci 52:3401 CrossRefGoogle Scholar
  93. 93.
    Sun MS, Talu O, Shah DB (1996) J Phys Chem B 100:17276 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Schuit Institute of Catalysis, Faculty of Chemical Engineering and ChemistryEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Accelerator Laboratory, Schuit Institute of Catalysis, Faculty of Technical PhysicsEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations