Skip to main content

Investigation of Diffusion in Molecular Sieves by Neutron Scattering Techniques

  • Chapter
  • First Online:

Part of the book series: Molecular Sieves ((SIEVES,volume 7))

Abstract

Neutron scattering was first used to derive the self-diffusivities of hydrocarbons in zeolites, but transport diffusivities of deuterated molecules and of molecules which do not contain hydrogen atoms can now be measured. The technique allows one to probe diffusion over space scales ranging from a few Å to hundreds of Å. The mechanism of diffusion can, thus, be followed from the elementary jumps between adsorption sites to Fickian diffusion. The neutron spin-echo technique pushes down the lower limit of diffusion coefficients, traditionally accessible by neutron methods, by two orders of magnitude. The neutron scattering results indicate that the corrected diffusivity is rarely constant and that it follows neither the Darken approximation nor the lattice gas model. The clear minimum and maximum in diffusivity observed by neutron spin-echo for n-alkanes in 5A zeolite is reminiscent of the controversial “window effect”.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fitch AN, Jobic H (1999) In: Karge HG, Weitkamp J (eds) Molecular Sieves – Science and Technology, vol 2. Springer, Heidelberg, p 31

    Google Scholar 

  2. Kärger J, Ruthven DM (1992) Diffusion in Zeolites and Other Microporous Solids. Wiley, New York

    Google Scholar 

  3. Jobic H, Bée M, Renouprez A (1984) Surf Sci 140:307

    Article  CAS  Google Scholar 

  4. Jobic H, Hahn K, Kärger J, Bée M, Tuel A, Noack M, Girnus I, Kearley GJ (1997) J Phys Chem B 101:5834

    Article  CAS  Google Scholar 

  5. Jobic H, Kärger J, Bée M (1999) Phys Rev Lett 82:4260

    Article  CAS  Google Scholar 

  6. Hoogenboom JP, Tepper HL, van der Vegt NFA, Briels WJ (2000) J Chem Phys 113:6875

    Article  CAS  Google Scholar 

  7. Maginn EJ, Bell AT, Theodorou DN (1993) J Phys Chem 97:4173

    Article  CAS  Google Scholar 

  8. Skoulidas AI, Sholl DS (2003) J Phys Chem A 107:10132

    Article  CAS  Google Scholar 

  9. Jobic H, Bée M, Caro J, Bülow M, Kärger J (1989) J Chem Soc, Faraday Trans 1 85:4201

    Article  CAS  Google Scholar 

  10. van Hove L (1954) Phys Rev 95:249

    Article  Google Scholar 

  11. Cook JC, Richter D, Schärf O, Benham MJ, Ross DK, Hempelmann R, Anderson IS, Sinha SK (1990) J Phys: Condens Matter 2:79

    Article  CAS  Google Scholar 

  12. Sears VF (1967) Can J Phys 45:237

    CAS  Google Scholar 

  13. Chudley CT, Elliott RJ (1961) Proc Phys Soc London 77:353

    Article  Google Scholar 

  14. Hall PL, Ross DK (1981) Mol Phys 42:673

    Article  CAS  Google Scholar 

  15. Singwi KS, Sjölander A (1960) Phys Rev 119:863

    Article  CAS  Google Scholar 

  16. Jobic H (2000) In: Kanellopoulos NK (ed) Recent Advances in Gas Separation by Microporous Membranes, Membrane Science and Technology Series, 6. Elsevier, p 109

    Google Scholar 

  17. Jobic H (1999) Phys Chem Chem Phys 1:525

    Article  CAS  Google Scholar 

  18. Jobic H, Ernst H, Heink W, Kärger J, Tuel A, Bée M (1998) Microporous Mesoporous Mater 26:67

    Article  CAS  Google Scholar 

  19. Sayeed A, Mitra S, Avil Kumar AV, Mukhopadhyay R, Yashonath S, Chaplot SL (2003) J Phys Chem B 107:527

    Article  CAS  Google Scholar 

  20. Bée M (1988) Quasielastic Neutron Scattering. Adam Hilger, Bristol

    Google Scholar 

  21. Jobic H, Méthivier A, Ehlers G (2002) Microporous Mesoporous Mater 56:27

    Article  CAS  Google Scholar 

  22. Mezei F (ed) (1979) Neutron Spin Echo, Lectures Notes in Physics, vol 128. Springer, Berlin

    Google Scholar 

  23. Auerbach SM (2000) Int Rev Phys Chem 19:155

    Article  CAS  Google Scholar 

  24. Jobic H (2002) Microporous Mesoporous Mater 55:159

    Article  CAS  Google Scholar 

  25. Takahara S, Nakano M, Kittaka S, Kuroda Y, Mori T, Hamano H, Yamaguchi T (1999) J Phys Chem B 103:5814

    Article  CAS  Google Scholar 

  26. Sahasrabudhe A, Mitra S, Tripathi AK, Mukhopadhyay R, Gupta NM (2002) J Phys Chem B 106:10923

    Article  CAS  Google Scholar 

  27. Benes NE, Jobic H, Verweij H (2001) Microporous Mesoporous Mater 43:147

    Article  CAS  Google Scholar 

  28. Benes NE, Jobic H, Réat V, Bouwmeester H, Verweij H (2003) Sep Purif Technol 32:9

    Article  CAS  Google Scholar 

  29. Crupi V, Majolino D, Migliardo P, Venuti V, Wanderlingh U, Mizota T, Telling M (2004) J Phys Chem B 108:4314

    Article  CAS  Google Scholar 

  30. Jobic H, Makrodimitris K, Papadopoulos GK, Schober H, Theodorou DN (2004) In: van Steen E et al. (ed) Proceedings of the 14th International Zeolite Conference. Cape Town, p 2056

    Google Scholar 

  31. Papadopoulos GK, Jobic H, Theodorou DN (2004) J Phys Chem B 108:12748

    Article  CAS  Google Scholar 

  32. Reed DA, Ehrlich G (1981) Surf Sci 102:588

    Article  CAS  Google Scholar 

  33. Paschek D, Krishna R (2001) Chem Phys Lett 342:148

    Article  CAS  Google Scholar 

  34. Jobic H, Skoulidas AI, Sholl DS (2004) J Phys Chem B 108:10613

    Article  CAS  Google Scholar 

  35. Guisnet A (1964) Théorie et technique de la radiocristallographie. Dunod, Paris

    Google Scholar 

  36. Jobic H, Laloué N, Laroche C, van Baten JM, Krishna R (2006) J Phys Chem B 110:2195

    Article  CAS  Google Scholar 

  37. Kutner R (1981) Phys Lett 81A:239

    CAS  Google Scholar 

  38. Skoulidas AI, Sholl DS (2002) J Phys Chem B 106:5058

    Article  CAS  Google Scholar 

  39. Xiao J, Wei J (1992) Chem Eng Sci 47:1143

    Article  CAS  Google Scholar 

  40. Millot B, Méthivier A, Jobic H, Moueddeb H, Bée M (1999) J Phys Chem B 103:1096

    Article  CAS  Google Scholar 

  41. Bouyermaouen A, Bellemans A (1998) J Chem Phys 108:2170

    Article  CAS  Google Scholar 

  42. Schuring D, Jansen APJ, van Santen RA (2000) J Phys Chem B 104:941

    Article  CAS  Google Scholar 

  43. Vlugt TJH, Dellago C, Smit B (2000) J Chem Phys 113:8791

    Article  CAS  Google Scholar 

  44. Jobic H et al. (2005) Experimental Report at the FRJ-2 Reactor, Jülich

    Google Scholar 

  45. Geier O, Vasenkov S, Lehmann E, Kärger J, Schemmert U, Rakoczy RA, Weitkamp J (2001) J Phys Chem B 105:10217

    Article  CAS  Google Scholar 

  46. Gorring RL (1973) J Catal 31:13

    Article  CAS  Google Scholar 

  47. Cavalcante CL, Eic M, Ruthven DM, Occelli ML (1995) Zeolites 15:293

    Article  CAS  Google Scholar 

  48. Magalhaes FD, Laurence RL, Conner WC (1996) AIChE J 42:68

    Article  CAS  Google Scholar 

  49. Jobic H, Méthivier A, Ehlers G, Farago B, Haeussler W (2004) Angew Chem Int Ed 43:364

    Article  CAS  Google Scholar 

  50. Kärger J, Pfeifer H, Rauscher M, Walter A (1980) J Chem Soc Faraday Trans 1 76:717

    Article  Google Scholar 

  51. Jobic H, Kärger J, Krause C, Brandani S, Gunadi A, Méthivier A, Ehlers G, Farago B, Haeussler W, Ruthven DM (2005) Adsorption 11:403

    Article  Google Scholar 

  52. Dubbeldam D, Calero S, Maesen TLM, Smit B (2003) Phys Rev Lett 90:245901/1

    Google Scholar 

  53. Runnebaum RC, Maginn EJ (1997) J Phys Chem B 101:6394

    Article  CAS  Google Scholar 

  54. Yashonath S, Santikary P (1994) J Phys Chem 98:6368

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Jobic .

Editor information

Hellmut G. Karge Jens Weitkamp

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jobic, H. (2007). Investigation of Diffusion in Molecular Sieves by Neutron Scattering Techniques. In: Karge, H.G., Weitkamp, J. (eds) Adsorption and Diffusion. Molecular Sieves, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3829_2007_012

Download citation

Publish with us

Policies and ethics