Advertisement

Investigation of Diffusion in Molecular Sieves by Neutron Scattering Techniques

Chapter
Part of the Molecular Sieves book series (SIEVES, volume 7)

Abstract

Neutron scattering was first used to derive the self-diffusivities of hydrocarbons in zeolites, but transport diffusivities of deuterated molecules and of molecules which do not contain hydrogen atoms can now be measured. The technique allows one to probe diffusion over space scales ranging from a few Å to hundreds of Å. The mechanism of diffusion can, thus, be followed from the elementary jumps between adsorption sites to Fickian diffusion. The neutron spin-echo technique pushes down the lower limit of diffusion coefficients, traditionally accessible by neutron methods, by two orders of magnitude. The neutron scattering results indicate that the corrected diffusivity is rarely constant and that it follows neither the Darken approximation nor the lattice gas model. The clear minimum and maximum in diffusivity observed by neutron spin-echo for n-alkanes in 5A zeolite is reminiscent of the controversial “window effect”.

Corrected diffusivity Neutron scattering Self-diffusivity transport diffusivity Zeolites  

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fitch AN, Jobic H (1999) In: Karge HG, Weitkamp J (eds) Molecular Sieves – Science and Technology, vol 2. Springer, Heidelberg, p 31 Google Scholar
  2. 2.
    Kärger J, Ruthven DM (1992) Diffusion in Zeolites and Other Microporous Solids. Wiley, New York Google Scholar
  3. 3.
    Jobic H, Bée M, Renouprez A (1984) Surf Sci 140:307 CrossRefGoogle Scholar
  4. 4.
    Jobic H, Hahn K, Kärger J, Bée M, Tuel A, Noack M, Girnus I, Kearley GJ (1997) J Phys Chem B 101:5834 CrossRefGoogle Scholar
  5. 5.
    Jobic H, Kärger J, Bée M (1999) Phys Rev Lett 82:4260 CrossRefGoogle Scholar
  6. 6.
    Hoogenboom JP, Tepper HL, van der Vegt NFA, Briels WJ (2000) J Chem Phys 113:6875 CrossRefGoogle Scholar
  7. 7.
    Maginn EJ, Bell AT, Theodorou DN (1993) J Phys Chem 97:4173 CrossRefGoogle Scholar
  8. 8.
    Skoulidas AI, Sholl DS (2003) J Phys Chem A 107:10132 CrossRefGoogle Scholar
  9. 9.
    Jobic H, Bée M, Caro J, Bülow M, Kärger J (1989) J Chem Soc, Faraday Trans 1 85:4201 CrossRefGoogle Scholar
  10. 10.
    van Hove L (1954) Phys Rev 95:249 CrossRefGoogle Scholar
  11. 11.
    Cook JC, Richter D, Schärf O, Benham MJ, Ross DK, Hempelmann R, Anderson IS, Sinha SK (1990) J Phys: Condens Matter 2:79 CrossRefGoogle Scholar
  12. 12.
    Sears VF (1967) Can J Phys 45:237 Google Scholar
  13. 13.
    Chudley CT, Elliott RJ (1961) Proc Phys Soc London 77:353 CrossRefGoogle Scholar
  14. 14.
    Hall PL, Ross DK (1981) Mol Phys 42:673 CrossRefGoogle Scholar
  15. 15.
    Singwi KS, Sjölander A (1960) Phys Rev 119:863 CrossRefGoogle Scholar
  16. 16.
    Jobic H (2000) In: Kanellopoulos NK (ed) Recent Advances in Gas Separation by Microporous Membranes, Membrane Science and Technology Series, 6. Elsevier, p 109 Google Scholar
  17. 17.
    Jobic H (1999) Phys Chem Chem Phys 1:525 CrossRefGoogle Scholar
  18. 18.
    Jobic H, Ernst H, Heink W, Kärger J, Tuel A, Bée M (1998) Microporous Mesoporous Mater 26:67 CrossRefGoogle Scholar
  19. 19.
    Sayeed A, Mitra S, Avil Kumar AV, Mukhopadhyay R, Yashonath S, Chaplot SL (2003) J Phys Chem B 107:527 CrossRefGoogle Scholar
  20. 20.
    Bée M (1988) Quasielastic Neutron Scattering. Adam Hilger, Bristol Google Scholar
  21. 21.
    Jobic H, Méthivier A, Ehlers G (2002) Microporous Mesoporous Mater 56:27 CrossRefGoogle Scholar
  22. 22.
    Mezei F (ed) (1979) Neutron Spin Echo, Lectures Notes in Physics, vol 128. Springer, Berlin Google Scholar
  23. 23.
    Auerbach SM (2000) Int Rev Phys Chem 19:155 CrossRefGoogle Scholar
  24. 24.
    Jobic H (2002) Microporous Mesoporous Mater 55:159 CrossRefGoogle Scholar
  25. 25.
    Takahara S, Nakano M, Kittaka S, Kuroda Y, Mori T, Hamano H, Yamaguchi T (1999) J Phys Chem B 103:5814 CrossRefGoogle Scholar
  26. 26.
    Sahasrabudhe A, Mitra S, Tripathi AK, Mukhopadhyay R, Gupta NM (2002) J Phys Chem B 106:10923 CrossRefGoogle Scholar
  27. 27.
    Benes NE, Jobic H, Verweij H (2001) Microporous Mesoporous Mater 43:147 CrossRefGoogle Scholar
  28. 28.
    Benes NE, Jobic H, Réat V, Bouwmeester H, Verweij H (2003) Sep Purif Technol 32:9 CrossRefGoogle Scholar
  29. 29.
    Crupi V, Majolino D, Migliardo P, Venuti V, Wanderlingh U, Mizota T, Telling M (2004) J Phys Chem B 108:4314 CrossRefGoogle Scholar
  30. 30.
    Jobic H, Makrodimitris K, Papadopoulos GK, Schober H, Theodorou DN (2004) In: van Steen E et al. (ed) Proceedings of the 14th International Zeolite Conference. Cape Town, p 2056 Google Scholar
  31. 31.
    Papadopoulos GK, Jobic H, Theodorou DN (2004) J Phys Chem B 108:12748 CrossRefGoogle Scholar
  32. 32.
    Reed DA, Ehrlich G (1981) Surf Sci 102:588 CrossRefGoogle Scholar
  33. 33.
    Paschek D, Krishna R (2001) Chem Phys Lett 342:148 CrossRefGoogle Scholar
  34. 34.
    Jobic H, Skoulidas AI, Sholl DS (2004) J Phys Chem B 108:10613 CrossRefGoogle Scholar
  35. 35.
    Guisnet A (1964) Théorie et technique de la radiocristallographie. Dunod, Paris Google Scholar
  36. 36.
    Jobic H, Laloué N, Laroche C, van Baten JM, Krishna R (2006) J Phys Chem B 110:2195 CrossRefGoogle Scholar
  37. 37.
    Kutner R (1981) Phys Lett 81A:239 Google Scholar
  38. 38.
    Skoulidas AI, Sholl DS (2002) J Phys Chem B 106:5058 CrossRefGoogle Scholar
  39. 39.
    Xiao J, Wei J (1992) Chem Eng Sci 47:1143 CrossRefGoogle Scholar
  40. 40.
    Millot B, Méthivier A, Jobic H, Moueddeb H, Bée M (1999) J Phys Chem B 103:1096 CrossRefGoogle Scholar
  41. 41.
    Bouyermaouen A, Bellemans A (1998) J Chem Phys 108:2170 CrossRefGoogle Scholar
  42. 42.
    Schuring D, Jansen APJ, van Santen RA (2000) J Phys Chem B 104:941 CrossRefGoogle Scholar
  43. 43.
    Vlugt TJH, Dellago C, Smit B (2000) J Chem Phys 113:8791 CrossRefGoogle Scholar
  44. 44.
    Jobic H et al. (2005) Experimental Report at the FRJ-2 Reactor, Jülich Google Scholar
  45. 45.
    Geier O, Vasenkov S, Lehmann E, Kärger J, Schemmert U, Rakoczy RA, Weitkamp J (2001) J Phys Chem B 105:10217 CrossRefGoogle Scholar
  46. 46.
    Gorring RL (1973) J Catal 31:13 CrossRefGoogle Scholar
  47. 47.
    Cavalcante CL, Eic M, Ruthven DM, Occelli ML (1995) Zeolites 15:293 CrossRefGoogle Scholar
  48. 48.
    Magalhaes FD, Laurence RL, Conner WC (1996) AIChE J 42:68 CrossRefGoogle Scholar
  49. 49.
    Jobic H, Méthivier A, Ehlers G, Farago B, Haeussler W (2004) Angew Chem Int Ed 43:364 CrossRefGoogle Scholar
  50. 50.
    Kärger J, Pfeifer H, Rauscher M, Walter A (1980) J Chem Soc Faraday Trans 1 76:717 CrossRefGoogle Scholar
  51. 51.
    Jobic H, Kärger J, Krause C, Brandani S, Gunadi A, Méthivier A, Ehlers G, Farago B, Haeussler W, Ruthven DM (2005) Adsorption 11:403 CrossRefGoogle Scholar
  52. 52.
    Dubbeldam D, Calero S, Maesen TLM, Smit B (2003) Phys Rev Lett 90:245901/1 Google Scholar
  53. 53.
    Runnebaum RC, Maginn EJ (1997) J Phys Chem B 101:6394 CrossRefGoogle Scholar
  54. 54.
    Yashonath S, Santikary P (1994) J Phys Chem 98:6368 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Institut de Recherches sur la Catalyse et l'Environnement de LYONCNRS, Université de Lyon, UMR5256VilleurbanneFrance

Personalised recommendations