Skip to main content

Design of r.f. cavities

  • A: Computing for Accelerator Design
  • Conference paper
  • First Online:
Computing in Accelerator Design and Operation

Part of the book series: Lecture Notes in Physics ((LNP,volume 215))

Abstract

In linear accelerators and electron storage rings the r.f. accelerating system represents a major part of investment and operating cost. For many years r.f. cavities have been designed with the aim of maximising shunt impedance so as to minimise the power input for a given gradient. Many parasitic collective effects are caused by the cavities such as beam loading, instabilities, bunch lengthening, head tail turbulence and beam break-up. In recent years these effects have been found to cause severe performance limitations in many high energy physics facilities. As a consequence, the design goal for cavities has to be redefined in a much broader perspective. With recently developed computer codes the overall effects of accelerating cavities can now be studied ranging from shunt impedance considerations to the most complicated beam dynamic aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. W. Trowbridge, this conference

    Google Scholar 

  2. E. Wilson, this conference

    Google Scholar 

  3. A. Wrulich, this conference

    Google Scholar 

  4. W. Walkinshaw et al., AERE report TM/104 (1954)

    Google Scholar 

  5. M. Bell, H. Hereward, CERN/63-33/1963

    Google Scholar 

  6. H. Hahn, Rev. Sci. Inst. 34 (1963), p. 1094

    Google Scholar 

  7. R. L. Gluckstern, 1961 Internat. Conf. on High Energy Accel.,p.129

    Google Scholar 

  8. M. Nakamura, Japanese Journal of Applied Physics 7 (1968),p.257

    Google Scholar 

  9. R. H. Helm, SLAC-PUB-813, 1970 and references therein

    Google Scholar 

  10. T. Edwards, MURA rep. 622 (1961)

    Google Scholar 

  11. H. C. Hoyt, D. D. Simmonds, W. F. Rich, Rev. Sci. Instr. 37 (1966), p.755

    Google Scholar 

  12. K. Halbach, R. F. Holsinger, Part.Accel. 7 (1976), p. 213

    Google Scholar 

  13. E. Keil, NIM 100 (1972), p.419

    Google Scholar 

  14. K. Bane, B. Zotter, XI-th Int.Conf. on High Energy Accel.,Geneva 1980,p.581

    Google Scholar 

  15. K. Bane, P.B. Wilson, SLAC, PEP-226A (1977)

    Google Scholar 

  16. V. E. Balakin et al., SLAC-TRANS-188(1978)

    Google Scholar 

  17. A. V. Novokhatskij, Inst. of Nucl. Phys., Siberian Div. of the USSR, Preprint 82-157 (in Russian) and references therein

    Google Scholar 

  18. T. Weiland, XI-th Internat.Confl. on High Energy Accel., Geneva 1980, p.575

    Google Scholar 

  19. K. Bane, T. Weiland, SLAC-AP1,(1983) and 12th Conf.on High Energy, 1983

    Google Scholar 

  20. A. G. Daikovskii, In. I. Portugolov, A. D. Riabov, Part. Accel. 12, p.59/1982)

    Google Scholar 

  21. R. L. Gluckstern et al., 1981 Linear Accel. Conf., Santa Fe, p.10_2

    Google Scholar 

  22. T. Weiland, DESY 83-005, 1983 and DESY M-82-24(1982)

    Google Scholar 

  23. Z. J. Csendes, R. M. J. Silvester, IEEE MIT 18 (1970), p.1124

    Google Scholar 

  24. J. S. Hornsby, A. Gopinath, IEEE MIT 17 (1969), p.684

    Google Scholar 

  25. S. Akhtarazad, P. B. Johns, IEEE Vol.122 (1975), p.1134

    Google Scholar 

  26. T. Weiland, AEü 33 (1979), p.170

    Google Scholar 

  27. M. Albani, M. Ber'nardi, IEEE MIT 22 (1974), p.446

    Google Scholar 

  28. W. Wilhelm, Part. Accel. 12 (1982),p.139

    Google Scholar 

  29. M. Hara et al., IEEE-NS 30, (1983), p.3639

    Google Scholar 

  30. T. Weiland, AEÜ 31 (1977), p.116

    Google Scholar 

  31. M. A. Allen and P. B. Wilson, Proc. of the 1974 Internat. Conf. on High Energy Accel., Stanford, p.92 and references therein

    Google Scholar 

  32. M. A. Allen et al., IEEE, NS-24 (1977), p.1780

    Google Scholar 

  33. H. Gerke et al., DESY PET-77/08(1977)

    Google Scholar 

  34. S. O. Schriber, LASL report, LA-UR 79-463(1979)

    Google Scholar 

  35. J. M. Potter et al., 1979 Particle Accelerator Conference, San Franzisko(1979)

    Google Scholar 

  36. LEP design report, CERN/ISR-LEP/79-13

    Google Scholar 

  37. e.g. discussion and references in: M. Tigner, H. Padamsee, Cornell, CLN582/553

    Google Scholar 

  38. P. Kneisl et al., NIM 188 (1981), p.665

    Google Scholar 

  39. W. Ebeling et al., IEEE NS-30 (1983), p.3357

    Google Scholar 

  40. D. Degele et al., XI Internat. Conf. on High Energy Accel., Geneva 1980,p.16

    Google Scholar 

  41. R. D. Kohaupt, XI Internat. Conf. on High Energy Accel. Geneva 1980,p.562

    Google Scholar 

  42. T. Weiland, DESY 82-015 (1982)

    Google Scholar 

  43. H. Henke, LEP note 454 (1983)

    Google Scholar 

  44. T. Weiland, DESY 83-073(1983)

    Google Scholar 

  45. T. Weiland, DESY 81-088(1981)

    Google Scholar 

  46. R. H. Siemann, CBN 82-27, 1982

    Google Scholar 

  47. D. Brandt, LEP note 444, 1983

    Google Scholar 

  48. T. Weiland, A. Wrulich, WAKERACE-Code, to be published

    Google Scholar 

  49. T. Weiland, F. Willeke, 12th Int. Conf. Accel., 1983

    Google Scholar 

  50. A. Wrulich, RACETRACK-Code, being published

    Google Scholar 

  51. K. Bane, T. Weiland, 12-th Internat. Conf. Accel., 1983

    Google Scholar 

  52. R. L. Gluckstern, Proc. of the IV-th Compumag Conf., Geneva 1983, being publ.

    Google Scholar 

  53. B. B. Fomel et al., Part. Accel. 11, (1981), p.173

    Google Scholar 

  54. P. Fernandes, R. Parodi, Part.Accel.12 (1982),p.131

    Google Scholar 

  55. J. Tückmantel, CERN/Ef-RF/83-5 '

    Google Scholar 

  56. R. F. Holsinger, S. O. Schriber, IEEE NS-30 (1983),p.3545

    Google Scholar 

  57. H. Euler et al. AfE 65 (1982), p.299

    Google Scholar 

  58. T. Weiland, AfE 60 (1978), p.345

    Google Scholar 

  59. H. Euler, T. Weiland, AfE 61 (1979), p.103

    Google Scholar 

  60. T. Weiland, Archiv der etz 1 (1979), p.263

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Winfried Busse Roman Zelazny

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag

About this paper

Cite this paper

Weiland, T. (1984). Design of r.f. cavities. In: Busse, W., Zelazny, R. (eds) Computing in Accelerator Design and Operation. Lecture Notes in Physics, vol 215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3540139095_83

Download citation

  • DOI: https://doi.org/10.1007/3540139095_83

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13909-6

  • Online ISBN: 978-3-540-39130-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics