Advertisement

Disordered systems

III. Theoretical Approaches for Disordered Systems
Part of the Lecture Notes in Physics book series (LNP, volume 113)

Abstract

Calculations of the electronic properties of one-dimensional disordered systems are presented illustrating the two-distinct approaches to the study of aperiodic systems : formal analytic methods and the direct numerical approach. The virtual crystal approximation is used for the calculation of the electronic structure of hydro carbon polymers with different substituents. Within the coherent potential approximation the density of states of the valence band of the (SN)x chain with hydrogen impurities is calculated. The direct numerical approach is applied to evaluate the eigenvalue spectra of ordered and random two-component protein model chains of length 1000 and 10000 units.

Keywords

Alanine Residue Eigenvalue Spectrum Coherent Potential Approximation Hydrogen Impurity Histogram Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Del Re, J. Ladik and G. Biczó, Phys. Rev., 155, 997 (1967)Google Scholar
  2. [1a]
    J.M. André, L. Gouverneur and G. Leroy, Intern. J. Quantum Chem., 1, 427 and 451 (1967)Google Scholar
  3. [1b]
    J.M. André and J. Ladik, ed., Electronic Structure of Polymers and Molecular Crystals (Plenum Press, New York), 1975Google Scholar
  4. [1c]
    J. Callaway, Quantum Theory of Solid State (Academic Press, New York, London), 1974Google Scholar
  5. [2]
    R.J. Elliot, J.A. Krumhansl and P.L. Leath, Rev. Mod. Physics, 46, 465 (1974)Google Scholar
  6. [2a]
    H. Ehrenreich and L.M. Schwartz, Solid State Physics, 31, 149 (1976)Google Scholar
  7. [3]
    F. Martino in “Quantum Theory of Polymers”, J.M. André, J. Delhalle and J. Ladik, eds. (D. Reidel Publ. Co., Dordrecht-Boston, 1978), p. 149Google Scholar
  8. [4]
    P. Dean, Rev. Mod. Physics, 44, 127 (1972)Google Scholar
  9. [5]
    P. Dean, Proc. Roy. Soc. A, 254, 507 (1960)Google Scholar
  10. [5a]
    P. Dean, Proc. Roy. Soc. A, 260, 263 (1961)Google Scholar
  11. [6]
    M. Seel and J. Ladik, J. Phys.C. (submitted)Google Scholar
  12. [7]
    M. Seel, T.C. Collins, F. Martino, D.K. Rai and J. Ladik, Phys. Rev. B, Dec. 15 (1978)Google Scholar
  13. [8]
    M. Seel, Chem. Phys. (submitted)Google Scholar
  14. [9]
    J. Ladik and M. Seel, Phys. Rev. B, 13, 5338 (1976)Google Scholar
  15. [10]
    J.J. Pireaux, J. Riga, R. Caudano, J.J. Verbist, J. Delhalle, S. Delhalle, J.M. André, Y. Gobillon, Physica Scripta, 16, 329 (1977)Google Scholar
  16. [11]
    S. Suhai (unpublished results)Google Scholar
  17. [12]
    P. Mengel, P.M. Grant, W.E. Rudge, B.H. Schechtmann and D.W. Rice, Phys. Rev. Letters, 35, 1803 (1975)Google Scholar
  18. [13]
    J. Hori, Spectral Properties of Disordered Chains and Lattices (Plenum Press, Oxford, 1968), p. 34Google Scholar
  19. [14]
    S. Suhai, J. Ladik and J. Kaspar, Biopolymers (submitted)Google Scholar
  20. [15]
    R. Alben, M. Blume, H. Krakauer and L. Schwartz, Phys. Rev. B, 12, 4090 (1975)Google Scholar
  21. [16]
    J.H. Wilkinson, The Algebraic Eigenvalue Problem (Clarendon Press, Oxford, 1965)Google Scholar
  22. [17]
    J. Delhalle, Bull. Soc. Chim. Belg., 84, 135 (1975)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • M. Seel
    • 1
  1. 1.Lehistuhl für Theoretische Chemie der Friedrich-Alexander-Universität Erlangen-NürnbergErlangen

Personalised recommendations