A model for the diamagnetic anomaly in CuCl

  • T. C. Collins
  • A. B. Kunz
  • R. S. Weidman
II. Theoretical Approaches for Ordered Systems
Part of the Lecture Notes in Physics book series (LNP, volume 113)


A self-consistent study of energy bands and defect and imputity levels in CuCl have been performed as a function of hydrostatic pressure and/or uniaxial distorsion. These studies are performed using a self-consistent Hartree-Fock technique plus correlation method. The principal results are that the upper valence band is mostly Cu 3d in origin, and that for the normal lattice constant the band gap is direct at Λ and of about 4 eV magnitude. Under uniaxial stress or hydrostatic pressure a weak indirect gap may be generated but of insufficient size to support Abrikosov's hypothesis We find that defects or impurities produce electron states near the conduction band. The role of these electrons is to interact with the exciton field and produce Cooper pairs. This interaction cuts off.when the density of free carriers is large enough to screen the exciton field.


Conduction Band Valence Band Band Structure Cooper Pair Uniaxial Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N.B. Brandt, S.V. Kuvishiunikov, A.P. Rusakov and V.M. Semenov, J.E.T.P. Letters, 27, 33 (1978)Google Scholar
  2. [2]
    C.W. Chu, A.P. Rusakov, S. Huang, S. Early, T.H. Geballe and C.Y. Huang, Phys. Rev., B18, 2116 (1978)Google Scholar
  3. [3]
    M. Cardona, Phys. Rev., 129, 69 (1963)Google Scholar
  4. [4]
    A.A. Abrikosov, J.E.T. P. Letters, 27, 219 (1978)Google Scholar
  5. [5]
    A. Goldmann, Phys. Stat. Sol. (b), 81, 9 (1977)Google Scholar
  6. [6]
    D.W. Allender, J.W. Bray and J. Bardeen, Phys. Rev., B7, 1020 (1973)Google Scholar
  7. [7]
    A.B. Kunz, J. Phys. C, 1542 (1970); Phys. Rev., B12, 5890 (1975)Google Scholar
  8. [8]
    K.M. Hall, Ph.D. Thesis (University of Illinois, 1976, unpublished)Google Scholar
  9. [9]
    K. Shindo, A. Morita, and H. Kamimura, J. Phys. Soc. Japan, 20, 2054 (1965)Google Scholar
  10. [10]
    S. Suga, T. Koda and T. Mitani, Phys. Stat. Sol. (b), 48, 753 (1971)Google Scholar
  11. [11]
    E. Calabrese and W.B. Fowler, Phys. Stat. Sol. (b), 57, 135 (1973)Google Scholar
  12. [12]
    K. Song, J. de Physique, 28, 195 (1967)Google Scholar
  13. [13]
    A.B. Kunz and D.L. Klein, Phys. Rev., B17, 4614 (1978)Google Scholar
  14. [14]
    A. Goldman, J. Jejeda, N.J. Shevchik and M. Cardona, Sol.St.Comm.,15, 1093 (1974); Phys. Rev., B10, 4388 (1974)Google Scholar
  15. [15]
    A.B. Kunz, Phys. Rev., B6, 606 (1972); J.T. Devreese, A.B. Kunz and T.C. Collins, Sol. St. Comm., 11, 673 (1972).Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • T. C. Collins
    • 1
  • A. B. Kunz
    • 2
  • R. S. Weidman
    • 2
  1. 1.Air Force Office of Scientific ResearchBolling A.F.B.USA
  2. 2.Department of Physics and Materials Research LaboratoryUniversity of Illinois at UrbanaChampaignUSA

Personalised recommendations