Advertisement

Dissipative structures and nonlinear kinetics of the Marangoni-instability

  • H. Linde
  • P. Schwartz
  • H. Wilke
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 105)

Abstract

The Marangoni-instability with the driving force of heat- or mass transfer across fluid interphases causes a self-amplification and self-organisation of movements at a fluid interphase which develop a spectrum of multiform dissipative structures. There exist manifold substructured spatial periodic systems of a hydrodynamic kind with a time depending behaviour which can degenerate to a typical relaxation oscillation. The latter differs completely from the spatial and temporal period structure of a two-parameter-oscillation with a wave-like behaviour,

The seinstabilities lead to a nonlinear acceleration in the mass- and heat transfer, Even the effect of Marangoni-stability is provable as a damping of the eddies of the forced surface renewal.

Under the condition of the balance between the shear stress and the surface tension gradient at a surface, which. is covered with adsorbed surface active agents, there exists at low viscous surfaces a more turbulence-analogic hydrodynamic instability with stationary spatial periodic and instationary spatial and temporal periodic dissipative structures.

Keywords

Heat Transfer Surface Active Agent Dissipative Structure Relaxation Oscillation Surface Tension Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Linde, E. Schwarz and K. Gröger, Chem. Eng. Sci., 1967, 22, 823Google Scholar
  2. 2.
    C. V. Sternling and Z. E. Scriven, Amer. Inst. Chem. Engineers J., 1959, 5, 514Google Scholar
  3. 3.
    H. Linde and E. Schviarz, Z. phys. Chem., 1963, 224, 331Google Scholar
  4. 4.
    H. Linde and P. Schwartz, Chem. Techn., 1974, 26, 455, Depot-System Chem. Techn. 1977Google Scholar
  5. 5.
    H. Wilke, Chem, Techn., 1974, 26, 456, Depot-System Chem. Techn. 1977Google Scholar
  6. 6.a
    H. Jehring, Nguyen Viet Huyen and E. Horn, J. Electroanal. Chem., 1978, 88, 265Google Scholar
  7. 6.b
    H. Jehring, H. Linde, G. Wessler and H. J. Krug, Z. phys. Chemie, in preparationGoogle Scholar
  8. 7.
    H. Linde and K. Loeschcke, Chemie-Ingenieur-Technik, 1966 39, 65, Mber. Dtsch. Akad. Wiss. Berlin, 1964, 6, 41Google Scholar
  9. 8.
    H. Linde and M. Kurekel, Z. Wärme-und Stoffübertragung, 1969, 2, 60Google Scholar
  10. 9.
    H. Linde and K. Winkler, Z. phys. Chem., 1965, 230, 207Google Scholar
  11. 9.a
    H. Linde and D. Thiessen, Z. phys. s. Chem., 1962, 221, 97 Mber. Dtsch. Akad, Wiss. Berlin, 1962, 4, 710Google Scholar
  12. 10.
    F. Friese, H. Linde and K. Zacharzowsky, Z. phys. Chem., in press, 1978Google Scholar
  13. 11.
    H. Linde and P. Friese, Teor. Osn. Chim. Techn., 1977Google Scholar
  14. 12.
    H. Linde and N. Shulewa, Mber. Dtsch. Akad. Wiss. Berlin, 1970, 12, 883Google Scholar
  15. 13.
    H. Linde and P. Friese, Z, phys. Chem., 1971, 247, 225Google Scholar
  16. 14.
    H. Linde and P. Schwartz, Teor. Osn. Chim. Techn., 1971, 401Google Scholar
  17. 15.
    A. A. Amsden and F, H, Harlow, Los Alamos Sei, Lab., 1971, Report LA-4700Google Scholar
  18. 16.
    E. Kahrig and H. Beßerdich, Fortschritte der experimentellen und theoretischen Biophysik Bd.21, VEB Georg: Thieme LeipzigGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • H. Linde
    • 1
  • P. Schwartz
    • 1
  • H. Wilke
    • 2
  1. 1.Zentralinstitut für physikalische Chemie der Akademie der Wissenschaften der DDRBerlinDDR
  2. 2.Zentralinstitut für Mathematik und Mechanik der Akademie der Wissenschaften der DDRBerlinDDR

Personalised recommendations