Skip to main content

Process development and economic aspects in enzyme engineering. Acylase L-methionine system

  • Conference paper
  • First Online:
Advances in Biomedical Engineering

Part of the book series: Advances in Biochemical Engineering ((ABE,volume 12))

Abstract

An integral study of chemical reaction engineering and process development including economic aspects was carried out using the optical resolution of aminoacids by means of native and carrier-fixed acylase as example. Continuous operation is not only possible with carrier-fixed enzymes but also with native enzymes using ultrafiltration devices for catalyst retention. It could experimentally be proved on a 1 kg L-methionine/d-scale that the use of soluble acylase in membrane-reactors is economically superior to the carrier-fixed type in the tube-reactors. In all cases where immobilization of enzymes cannot be achieved with high activity yield or remarkable increase in stability, the homogeneous catalysis with soluble enzymes in continuously operating membrane-reactors might be a very promising alternative. — These studies were performed at the “Institut für Technische Che-mie der Technischen Universität Hannover”, West-Germany.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zaborsky, O.R.: Immobilized enzymes. Cleveland, O.: CRC Press 1973

    Google Scholar 

  2. Pitcher, W.H.: In: Immobilized enzymes for industrial reactors. Messing, R.A. (ed.). New York: Academic Press 1975

    Google Scholar 

  3. Helmrich, H.: Dissertation, TU-Hannover, FRG 1974

    Google Scholar 

  4. Halwachs, W.: Dissertation, TU-Hannover, FRG 1976

    Google Scholar 

  5. Wandrey, C, Halwachs, W., Weiss, R., Schügerl, K.: Vth Int. Ferm. Symp., Berlin 1976

    Google Scholar 

  6. Kezdy, F.J., Bender, U.L.: Biochem. 1,6 (1962)

    Google Scholar 

  7. Schonbaum, G.R., Zerner, B., Bender, U.L.: J. Biol. Chem. 236, 11 (1961)

    Google Scholar 

  8. Bender, U.L., et al.: J. Amer. Chem. Soc. 88, 24 (1966)

    Google Scholar 

  9. Ford, J.R., Chambers, R.P., Cohen, W.: Biochim. Biophys. Acta 309, 175 (1973)

    Google Scholar 

  10. Commission Biochemical Nomenclature: Enzyme Nomenclature, Elsevier, Amsterdam, Netherland 1973

    Google Scholar 

  11. Lilly, U.D., Dunhill, P.: Process Biochem. 6, 29 (1971)

    Google Scholar 

  12. Vieth, W.R., Venkatasubramanian, K.: Chem. Tech. 677, 1 (1973)

    Google Scholar 

  13. Vieth, W.R., Venkatasubramanian, K., Constantinides, A., Davidson, B.: In: Immobilized enzyme principles, Vol. 1. New York: Academic Press 1976

    Google Scholar 

  14. Wingard, L.B.: Biotechnol. Bioeng. Symp. 3, 3 (1972)

    Google Scholar 

  15. Lilly, U.D., Regan, D.L., Dunhill, P.: In: Enzyme engineering. Pye, E.K., Wingard, L.B. (ed.), Vol. 2. New York: Plenum Press 1974

    Google Scholar 

  16. Havewala, N.B., Pitcher, W.H.: In: Enzyme engineering. Pye, E.K., Wingard, L.B. (ed.), Vol. 2. New York: Plenum Press 1974

    Google Scholar 

  17. Lim, H.C., Emigholz, K.F.: In: Enzyme engineering. Pye, E.K., Wingard, L.B. (ed.), Vol. 3. New York: Plenum Press 1977

    Google Scholar 

  18. Lilly, M.D., Smith, S.W., Dunhill, P.: Vth Int. Ferm. Symp., Berlin 1976

    Google Scholar 

  19. Chibata, I.: Proc. I.S.F.M., 75 (1972)

    Google Scholar 

  20. Mitz, M.A., Schlüter, R.J.: Biochim. Biophys. Acta 27, 168 (1958)

    Google Scholar 

  21. Potapow, V.M.: Wiss. Z. Techn. Hochsch. Chem. Leuna-Merseburg 11, 1 (1967)

    Google Scholar 

  22. Lowry, W.T., Vercellotti, J.R., Carrell, A.S.: Carbohydrate Res. 28, 93 (1973)

    Google Scholar 

  23. Wandrey, C: Chem. Ing. Tech. 48, 537 (1976)

    Google Scholar 

  24. Möller, K.G., Wandrey, C: Eur. J. Appl. Microbiol. 3, 81 (1976)

    Google Scholar 

  25. Blass, D.A.: Anal. Biochem. 71, 405 (1976)

    Google Scholar 

  26. Wandrey, C, Hönig, W., Kula, M.R.: Eur. J. Appl. Microbiol. 3, 257 (1977)

    Google Scholar 

  27. In: Handbook of chemistry and physics. Weast, R.C. (ed.), 56th ed. Cleveland, O.: CRC Press 1975

    Google Scholar 

  28. Seel, F.: Grundlagen der analytischen Chemie, 4th ed. Weinheim: Verlag Chemie 1968

    Google Scholar 

  29. Tosa, T., Mori, T., Fuse, N., Chibata, I.: Enzymologia 31, 214 (1966)

    Google Scholar 

  30. Tosa, T., Mori, T., Fuse, N., Chibata, I.: Enzymologia 31, 225 (1966)

    Google Scholar 

  31. Tosa, T., Mori, T., Fuse, N., Chibata, I.: Enzymologia 32, 153 (1967)

    Google Scholar 

  32. Tosa, T., Mori, T., Fuse, N., Chibata, I.: Biotechnol. Bioeng. 9, 603 (1967)

    Google Scholar 

  33. Tosa, T., Mori, T., Fuse, N., Chibata, I.: Agr. Biol. Chem. 33, 1047 (1969)

    Google Scholar 

  34. Tosa, T., Mori, T., Chibata, I.: Agr. Biol. Chem. 33, 1053 (1969)

    Google Scholar 

  35. Tosa, F., Mori, T., Chibata, I.: Enzymologia 40, 50 (1970)

    Google Scholar 

  36. Tosa, T., Mori, T., Chibata, I.: J. Ferment. Technol. 49, 522 (1971)

    Google Scholar 

  37. Sato, T., Mori, T., Tosa, T., Chibata, I.: Arch. Biochem. Biophys. 147, 788 (1971)

    Google Scholar 

  38. Mori, T., Sato, T., Tosa, T., Chibata, I.: Enzymologia 43, 213 (1972)

    Google Scholar 

  39. Wandrey, C: Habilitationsschrift, TU-Hannover, FRG 1977

    Google Scholar 

  40. Bruns, F.H., Schulze, C: Biochem. Z. 336, 162 (1962)

    Google Scholar 

  41. Cheng-Wu Chi, Orekhovich, V.N.: Biochimija 23, 772 (1958)

    Google Scholar 

  42. Svedberg, T., Pedersen, K.O.: The ultracentrifuge. Oxford: Calderon Press 1959

    Google Scholar 

  43. Lehninger, A.L. (ed.): Biochemie, p. 124. Weinheim: Verlag Chemie 1975

    Google Scholar 

  44. Kördel, W., Schneider, F.: Biochim. Biophys. Acta 445, 446 (1976)

    Google Scholar 

  45. Jaworek, D.: In: Enzyme engineering. Pye, E.K., Wingard, L.B. (ed.), Vol. 2. New York: Plenum Press 1974

    Google Scholar 

  46. Jokote, Y., Fujita, M., Schimura, G., Noguchi, S., Kimura, K., Samejima, H.: Agr. Biol. Chem. 39 (8), 1545 (1975)

    Google Scholar 

  47. Jaworek, D.: pers. commun.

    Google Scholar 

  48. Michaelis, L., Menten, M.L.: Biochem. Z. 49, 333 (1913)

    Google Scholar 

  49. Briggs, G.E., Haldane, J.B.S.: Biochem. J. 19, 338 (1925)

    Google Scholar 

  50. Hougen, O.A., Watson, K.M.: In: Chemical process principles, Vol. 3. New York: Wiley and Sons 1947

    Google Scholar 

  51. Langmuir, I.: J. Amer. Chem. Soc. 30, 1742 (1908)

    Google Scholar 

  52. Hooke, R., Jeeves, T.A.: J. Assoc. Comp. Mach. 8 (2), 212 (1961)

    Google Scholar 

  53. Nelder, J.A., Mead, R.: Computer J. 7, 441 (1965)

    Google Scholar 

  54. Marquardt, D.W.: Soc. Ind. Appl. Math. 11, 431 (1963)

    Google Scholar 

  55. Lineweaver, H., Burk, D.: J. Amer. Chem. Soc. 56, 658 (1934)

    Google Scholar 

  56. Eddie, G.S.: J. Biol. Chem. 146, 85 (1942)

    Google Scholar 

  57. Hofstee, B.H.J.: Science 116, 329 (1952)

    Google Scholar 

  58. Mounter, W.A., Diem, L.T.H., Bell, F.E.: J. Biol. Chem. 233, 403 (1958)

    Google Scholar 

  59. Flaschel, E.: Dissertation, TU-Hannover, FRG, 1976

    Google Scholar 

  60. Borchert, A.: Diplomwork, TU-Hannover, FRG 1976

    Google Scholar 

  61. Zurmühl, R.: In: Praktische Mathematik für Ingenieure und Physiker, 5th ed., p. 229. Berlin, Heidelberg, New York: Springer 1965

    Google Scholar 

  62. Blake, F.C.: Trans. AIChE 14, 415 (1922)

    Google Scholar 

  63. Draper, N., Smith, H.: Applied regression analysis. New York: Wiley and Sons 1966

    Google Scholar 

  64. Levenspiel, O.: Chemical reaction engineering, 2nd ed., p. 110; New York: Wiley and Sons 1972

    Google Scholar 

  65. Levenspiel, O.: Chemical reaction engineering, 2nd ed., pp. 136, 137. New York: Wiley and Sons 1972

    Google Scholar 

  66. Chambers, R.P., Cohen, W., Baricos, W.H.: Methods in enzymology 44, 291 (1976)

    Google Scholar 

  67. Pasek, A., Skachova, H., Hanus, J., Kucera, J.: Chemicke listy/svazek 71, 1053 (1977)

    Google Scholar 

  68. Wandrey, C, Flaschel, E.: Chem.-Ing.-Techn. 49 (3), 257 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag

About this paper

Cite this paper

Wandrey, C., Flaschel, E. (1979). Process development and economic aspects in enzyme engineering. Acylase L-methionine system. In: Advances in Biomedical Engineering. Advances in Biochemical Engineering, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3540092625_9

Download citation

  • DOI: https://doi.org/10.1007/3540092625_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09262-9

  • Online ISBN: 978-3-540-35266-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics