Advertisement

Wave-wave interactions near the shore

  • A. J. Bowen
Part III. — Waves on Beaches
Part of the Lecture Notes in Physics book series (LNP, volume 64)

Abstract

Wave-wave interaction on a beach may be regarded as a rather special example of second order, resonant interaction within a rapidly changing wave spectrum. However, the existence of trapped modes, edge waves, having a very different dispersion relation from that of the incoming waves provides the possibility of transferring energy efficiently to much lower frequencies than are normally observed in the open sea. Any detailed analysis of these interactions is, however, greatly complicated by the breaking of the incoming waves as they reach water depths of the order of their wave height. Recent field and laboratory data suggest that,although the wave breaking introduces new effects, nearshore currents and set-up for example, the forcing of the purely wave-wave interaction is not greatly altered by the breaking process. However, the increased effective viscosity of the region associated with the turbulent surf zone seems to play a significant role in suppressing resonance. Given equal forcing, edge waves whose offshore length scales are large compared to the surf zone width are therefore more likely to exist.

Keywords

Wave Breaking Surf Zone Resonant Interaction Incoming Wave Edge Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Birchfield, G. E., and C. J. Galvin, 1975. Geol. Soc. Amer. Mem., 142: 151–161.Google Scholar
  2. 2.
    Bowen, A. J., and D. L. Inman, 1969. J. Geophys. Res. 74: 2479–5490.Google Scholar
  3. 3.
    Bowen, A. J., and D. L. Inman, 1971. J. Geophys. Res. 76: 8662–8671.Google Scholar
  4. 4.
    Carrier, G. F., and H. P. Greenspan, 1958. J. Fluid Mech., 4: 97–109.Google Scholar
  5. 5.
    Eckart, C., 1951. Wave Rept. 100. Scripps Inst. of Oceanogr., Univ. of California, La Jolla, 99 pp.Google Scholar
  6. 6.
    Gallagher, B., 1971. J. Fluid Mech. 49: 1–20.Google Scholar
  7. 7.
    Galvin, C. J., 1965. Eos, Trans. AGU 46: 112.Google Scholar
  8. 8.
    Guza, R. T., and R. E. Davis, 1974. J. Geophys. Res. 79: 1285–1291.Google Scholar
  9. 9.
    Guza, R. T., and D. L. Inman, 1975. J. Geophys. Res. 80: 2997–3012.Google Scholar
  10. 10.
    Guza, R. T., and A. J. Bowen, 1975. J. Geophys. Res. 80: 4529–4534.Google Scholar
  11. 11.
    Guza, R. T., and A. J. Bowen, 1976a. J. Mar. Res. 34: 269–293.Google Scholar
  12. 12.
    Guza, R. T. and A. J. Bowen, 1976b. Proc. 15th Conf. on Coastal Engr. ASCE(in press).Google Scholar
  13. 13.
    Hasselmann, K., 1967. J. Fluid Mech. 30: 737–739.Google Scholar
  14. 14.
    Huntley, D. A., and A. J. Bowen, 1973. Nature 243: 160–162.Google Scholar
  15. 15.
    Huntley, D. A., and A. J. Bowen, 1975. Geol. Soc. London 131: 69–81.Google Scholar
  16. 16.
    Huntley, D. A., 1976. J. Geophys. Res. (in press).Google Scholar
  17. 17.
    Kenyon, K. E., 1970. Deep Sea Res., 17: 191–201.Google Scholar
  18. 18.
    Komar, P. D., and M. K. Gaughan, 1972. Proc. 13th Conf. on Coastal Engr., ASCE: 405-418.Google Scholar
  19. 19.
    Long, B. L., 1973. J. Geophys. Res., 20: 7861–7870.Google Scholar
  20. 20.
    Longuet-Higgins, M. S., and R. W. Stewart, 1962. J. Fluid Mech., 13: 481–504.Google Scholar
  21. 21.
    McGoldrick, L. F., O. M. Phillips, N. Huang, and T. Hodgson, 1966. J. Fluid Mech., 25: 437.Google Scholar
  22. 22.
    McGoldrick, L. F., 1970. J. Fluid Mech. 40: 251–271.Google Scholar
  23. 23.
    Mei, C. C. and B. LeMehauté, 1966. J. Geophys. Res. 71: 393–400.Google Scholar
  24. 24.
    Minzoni, A. A., 1976. J. Fluid Mech., 74: 369–374.Google Scholar
  25. 25.
    Munk, W. H., 1949. Trans. Amer. Geophys. Union, 30: 349–854.Google Scholar
  26. 26.
    Munk, W. H. and M. Winbush, 1969. Oceanology, 9: 56–69.Google Scholar
  27. 27.
    Stoker, J. J., 1957. Water Waves. Interscience, New York. 32: 69–84.Google Scholar
  28. 28.
    Tucker, M. J., 1950. Proc. Roy. Soc. London, A, 202: 565–573.Google Scholar
  29. 29.
    Ursell, F., 1952. Proc. Roy. Soc. London, A, 214: 79–97.Google Scholar
  30. 30.
    Whitham, G. B., 1976. J. Fluid Mech., 74: 353–368.Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • A. J. Bowen
    • 1
  1. 1.Department of OceanographyDalhousie UniversityHalifaxCanada

Personalised recommendations