Advertisement

Cylindrical solitary waves

  • Allen T. Chwang
  • Theodore Y. Wu
Part II. — Tsunami Generation and Propagation
Part of the Lecture Notes in Physics book series (LNP, volume 64)

Abstract

Equations of motion of the Boussinesq or Korteweg-deVries type are derived for three-dimensional (axisymmetrical), weakly nonlinear, long waves in water of variable depth. Typical numerical solutions are presented for the propagation and focusing of a cylindrical solitary wave over an ocean of constant depth, or over a submerged conical island of constant slope.

Keywords

Phase Velocity Solitary Wave Constant Depth Incoming Wave Cylindrical Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boussinesq, J.1871 Théorie de l'intumescence liquide appelée onde solitaire on detranslation se propageant dans un canal rectangulaire. Institut de France, Académie des Sciences, Comptes Rendus, 72, 755–759.Google Scholar
  2. 2.
    Korteweg, D. J. and deVries, G.1895 On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Phil. Mag. 39, 422–443.Google Scholar
  3. 3.
    Madsen, O. S. and Mei, C. C. 1969 Dispersive long waves of finite amplitude over an uneven bottom. Hydrodynamics Laboratory report No. 117, Massachusetts Institute of Technology.Google Scholar
  4. 4.
    Peregrine, D. H. 1966 Calculations of the development of an undular bore. J. Fluid Mech. 25, 321–330.Google Scholar
  5. 5.
    Peregrine, D. H.1967 Long waves on a beach. J. Fluid Mech. 27, 815–827.Google Scholar
  6. 6.
    Russell, S.1844 Report on waves. British Association Reports.Google Scholar
  7. 7.
    Ursell, F.1953 The long-wave paradox in the theory of gravity waves. Proc. Camb. Phil. Soc. 49, 685–694.Google Scholar
  8. 8.
    Whitham, G. B.1974 Linear and nonlinear waves. Wiley Interscience.Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Allen T. Chwang
    • 1
  • Theodore Y. Wu
    • 1
  1. 1.Engineering Science DepartmentCalifornia Institute of TechnologyPasadena

Personalised recommendations