Advertisement

Some classical water-wave problems in varying depth

  • E. O. Tuck
Part I — Wave Propagation in Water of Variable Depth
Part of the Lecture Notes in Physics book series (LNP, volume 64)

Abstract

A review and extension of some work on linearized water-waves over varying depths in a non-rotating fluid, with emphasis on the approach from the general class of finite-depth waterwave potential problems to the shallow-water limit.Matching techniques are used to treat this limit for the case of sudden changes in depth.Applications are to reflection and transmission of plane waves by sharp or smooth steps, and to ship hydrodynamics over nonuniform bottoms.

Keywords

Froude Number Jump Condition Ship Hull Wave Elevation Wave Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wehausen, J.V., 1973, Adv. App. Mech. 13:93–245.Google Scholar
  2. 2.
    Inui, T.,1957, 60th Anniv. Ser. Soc. Nav. Arch. Japan. 2:10.Google Scholar
  3. 3.
    Friedrichs, K.O.,1948, Comm. Pure & App. Math. 1:81–85.Google Scholar
  4. 4.
    Stoker, J.J., 1957, “Water waves”, New York: Interscience.Google Scholar
  5. 5.
    Tuck, E.O., 1966, J. Fluid Mech. 26:81–95.Google Scholar
  6. 6.
    Kober, H., 1957, “Dictionary of conformal representations”, New York: Dover.Google Scholar
  7. 7.
    Newman, J.N., 1969, J. Fluid Mech. 39: 97–115.Google Scholar
  8. 8.
    Tuck, E.O., 1975, Adv. App. Mech. 15: 89–158.Google Scholar
  9. 9.
    Taylor, P.J., 1977, J. Ship. Res. 17:97–105.Google Scholar
  10. 10.
    Lamb, H., 1932, “Hydrodynamics”, Cambridge.Google Scholar
  11. 11.
    Roseau, M., 1952, Publ. Sci. Tech. du Ministère de l'Air, No. 275. Paris.Google Scholar
  12. 12.
    Evans, D.V., 1972, Proc. Camb. Phil. Soc. 71:391–410.Google Scholar
  13. 13.
    Yeung, R.W., 1975, First. Int. Neun. Ship Hydro. Conf., Gaithersburg, Maryland.Google Scholar
  14. 14.
    Bartholomeusz, E.F., 1958, Proc. Camb. Phil. Soc. 54: 106–118.Google Scholar
  15. 15.
    Newman, J.N., 1965, J. Fluid Mech. 23: 399–415.Google Scholar
  16. 16.
    Hilaly, N., 1967, Univ. of Calif., Berkeley, Rep. No. HEL 1–7.Google Scholar
  17. 17.
    Miles, J.W., 1967, J. Fluid Mech. 28: 755–767.Google Scholar
  18. 18.
    Newman, J.N., 1965, J. Fluid Mech., 23: 23–29.Google Scholar
  19. 19.
    Ogilvie, T.F., 1960, Univ.Calif., Berkeley. Inst. Eng. Res. Rep. No. 82-14.Google Scholar
  20. 20.
    King, G., 1976, unpublished manuscript.Google Scholar
  21. 21.
    Plotkin, A., 1976, to appear in J. Eng. Math.Google Scholar
  22. 22.
    Dand, I.W., 1976, R.I.N.A., Spring Meeting, Paper No.6.Google Scholar
  23. 23.
    Ward, G.N., 1955, “Linearized theory of steady high-speed flow”. Cambridge.Google Scholar
  24. 24.
    Michell, J.H., 1898, Phil. Mag. (5) 45:106–123.Google Scholar
  25. 25.
    Tuck, E.O. and Taylor, P.J., 170, 8th Symp. Naval Hydro., 627–660.Google Scholar
  26. 26.
    Tuck, E.O., 1967, Schiffstechnik 14: 91–94.Google Scholar
  27. 27.
    Beck, R.F., Newman, J.N. and Tuck, E.O.,1975, J. Ship. Res. 19:166–171.Google Scholar
  28. 28.
    Tuck, E.O. and Newman, J.N., 1974, 10th Symp. Naval Hydro. 35–70.Google Scholar
  29. 29.
    Beck, R.F., 1976, Univ. Michigan, N.A.M.E. Report 179.Google Scholar
  30. 30.
    King, G. and Tuck, E.O., 1976, in preparation.Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • E. O. Tuck
    • 1
  1. 1.Applied Mathematics DepartmentUniversity of AdelaideAdelaideAustralia

Personalised recommendations