Skip to main content

Homogenous Iridium Catalysts for Biomass Conversion

  • Chapter
  • First Online:
Iridium Catalysts for Organic Reactions

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 69))

Abstract

The use of biomass as a sustainable feedstock for the production of chemicals has become more and more important in recent years. Homogeneous iridium catalysis offers great opportunities for the conversion of bio-derived platform molecules and even biomass components such as cellulose or lignin, due to the air, water, and acid stability of many iridium complexes. In this chapter, we review the application of iridium catalysts to the transformations of carbohydrate-derived compounds, fatty acids, and lignin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Werpy T, Petersen G (2004) Top value added chemicals from biomass volume I – results of screening for potential candidates from sugars and synthesis gas. https://doi.org/10.2172/15008859

  2. Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's “top 10” revisited. Green Chem 12:539–554

    CAS  Google Scholar 

  3. Deuss PJ, Barta K, de Vries JG (2014) Homogeneous catalysis for the conversion of biomass and biomass-derived platform chemicals. Cat Sci Technol 4:1174–1196

    CAS  Google Scholar 

  4. Sordakis K, Tang C, Vogt LK, Junge H, Dyson PJ, Beller M, Laurenczy G (2018) Homogeneous catalysis for sustainable hydrogen storage in formic acid and alcohols. Chem Rev 118:372–433

    CAS  PubMed  Google Scholar 

  5. De Clercq R, Dusselier M, Sels BF (2017) Heterogeneous catalysis for bio-based polyester monomers from cellulosic biomass: advances, challenges and prospects. Green Chem 19:5012–5040

    Google Scholar 

  6. Zhang Y, Liu D, Chen Z (2017) Production of C2-C4 diols from renewable bioresources: new metabolic pathways and metabolic engineering strategies. Biotechnol Biofuels 10:1–20

    Google Scholar 

  7. Stadler BM, Wulf C, Werner T, Tin S, De Vries JG (2019) Catalytic approaches to monomers for polymers based on renewables. ACS Catal 9:8012–8067

    CAS  Google Scholar 

  8. Pang J, Zheng M, Sun R, Wang A, Wang X, Zhang T (2016) Synthesis of ethylene glycol and terephthalic acid from biomass for producing PET. Green Chem 18:342–359

    CAS  Google Scholar 

  9. van der Waal JC, Gruter GJM, Claassens-Dekker P (2016) Process for preparing ethylene glycol from a carbohydrate source via transition metal-catalyzed hydrogenolysis. WO2016114660A1

    Google Scholar 

  10. Wu J, Shen L, Chen ZN, Zheng Q, Xu X, Tu T (2020) Iridium-catalyzed selective cross-coupling of ethylene glycol and methanol to lactic acid. Angew Chem Int Ed 59:10421–10425

    CAS  Google Scholar 

  11. Zhan Y, Hou W, Li G, Shen Y, Zhang Y, Tang Y (2019) Oxidant-free transformation of ethylene glycol toward glycolic acid in water. ACS Sustain Chem Eng 7:17559–17564

    CAS  Google Scholar 

  12. Torbina VV, Vodyankin AA, Ten S, Mamontov GV, Salaev MA, Sobolev VI, Vodyankina OV (2018) Ag-based catalysts in heterogeneous selective oxidation of alcohols: a review. Catalysts 8:313

    Google Scholar 

  13. Wang YM, Lorenzini F, Rebros M, Saunders GC, Marr AC (2016) Combining bio- and chemo-catalysis for the conversion of bio-renewable alcohols: homogeneous iridium catalysed hydrogen transfer initiated dehydration of 1,3-propanediol to aldehydes. Green Chem 18:1751–1761

    CAS  Google Scholar 

  14. Lacroix SD, Pennycook A, Liu S, Eisenhart TT, Marr AC (2012) Amination and dehydration of 1,3-propanediol by hydrogen transfer: reactions of a bio-renewable platform chemical. Cat Sci Technol 2:288–290

    CAS  Google Scholar 

  15. Ma Y, Wang YM, Morgan PJ, Jackson RE, Liu X, Saunders GC, Lorenzini F, Marr AC (2018) Designing effective homogeneous catalysis for glycerol valorisation: selective synthesis of a value-added aldehyde from 1,3-propanediol via hydrogen transfer catalysed by a highly recyclable, fluorinated Cp*Ir(NHC) catalyst. Catal Today 307:248–259

    CAS  Google Scholar 

  16. Bothwell KM, Lorenzini F, Mathers E, Marr PC, Marr AC (2019) Basic ionic liquid gels for catalysis: application to the hydrogen borrowing mediated dehydration of 1,3-Propanediol. ACS Sustain Chem Eng 7:2686–2690

    CAS  Google Scholar 

  17. Bahé F, Grand L, Cartier E, Jacolot M, Moebs-Sanchez S, Portinha D, Fleury E, Popowycz F (2020) Direct amination of Isohexides via borrowing hydrogen methodology: Regio- and Stereoselective issues. Eur J Org Chem 2020:599–608

    Google Scholar 

  18. Jacolot M, Moebs-Sanchez S, Popowycz F (2018) Diastereoselective iridium-catalyzed amination of biosourced Isohexides through borrowing hydrogen methodology. J Org Chem 83:9456–9463

    CAS  PubMed  Google Scholar 

  19. Froidevaux V, Negrell C, Caillol S, Pascault JP, Boutevin B (2016) Biobased amines: from synthesis to polymers; present and future. Chem Rev 116:14181–14224

    CAS  PubMed  Google Scholar 

  20. Kadraoui M, Maunoury T, Derriche Z, Guillarme S, Saluzzo C (2015) Isohexides as versatile scaffolds for asymmetric catalysis. Eur J Org Chem 2015:441–457

    CAS  Google Scholar 

  21. Janvier M, Moebs-Sanchez S, Popowycz F (2016) Nitrogen-functionalized isohexides in asymmetric induction. Chimia 70:77–83

    CAS  PubMed  Google Scholar 

  22. Imm S, Bähn S, Zhang M, Neubert L, Neumann H, Klasovsky F, Pfeffer J, Haas T, Beller M (2011) Improved ruthenium-catalyzed amination of alcohols with ammonia: synthesis of diamines and amino esters. Angew Chem Int Ed 50:7599–7603

    CAS  Google Scholar 

  23. Pingen D, Diebolt O, Vogt D (2013) Direct amination of bio-alcohols using ammonia. ChemCatChem 5:2905–2912

    CAS  Google Scholar 

  24. Zhang Y, Lim CS, Boon Sim DS, Pan HJ, Zhao Y (2014) Catalytic enantioselective amination of alcohols by the use of borrowing hydrogen methodology: cooperative catalysis by iridium and a chiral phosphoric acid. Angew Chem Int Ed 53:1399–1403

    CAS  Google Scholar 

  25. Gross J, Tauber K, Fuchs M, Schmidt NG, Rajagopalan A, Faber K, Fabian WMF, Pfeffer J, Haas T, Kroutil W (2014) Aerobic oxidation of isosorbide and isomannide employing TEMPO/laccase. Green Chem 16:2117–2121

    CAS  Google Scholar 

  26. Starr JN, Westhoff G (2014) Lactic acid, 7th edn. Ullmann’s encyclopedia of industrial chemistry. https://onlinelibrary.wiley.com/doi/book/10.1002/14356007

  27. Sharninghausen LS, Campos J, Manas MG, Crabtree RH (2014) Efficient selective and atom economic catalytic conversion of glycerol to lactic acid. Nat Commun 5:5084

    CAS  PubMed  Google Scholar 

  28. Manas MG, Campos J, Sharninghausen LS, Lin E, Crabtree RH (2015) Selective catalytic oxidation of sugar alcohols to lactic acid. Green Chem 17:594–600

    CAS  Google Scholar 

  29. Lu Z, Demianets I, Hamze R, Terrile NJ, Williams TJ (2016) A prolific catalyst for selective conversion of neat glycerol to lactic acid. ACS Catal 6:2014–2017

    CAS  Google Scholar 

  30. Sun Z, Liu Y, Chen J, Huang C, Tu T (2015) Robust iridium coordination polymers: highly selective, efficient, and recyclable catalysts for oxidative conversion of glycerol to potassium lactate with dihydrogen liberation. ACS Catal 5:6573–6578

    CAS  Google Scholar 

  31. Finn M, Ridenour JA, Heltzel J, Cahill C, Voutchkova-Kostal A (2018) Next-generation water-soluble homogeneous catalysts for conversion of glycerol to lactic acid. Organometallics 37:1400–1409

    CAS  Google Scholar 

  32. Cheong Y-J, Sung K, Park S, Jung J, Jang H-Y (2020) Valorization of chemical wastes: Ir(biscarbene)-catalyzed transfer hydrogenation of inorganic carbonates using glycerol. ACS Sustain Chem Eng 8:6972–6978

    CAS  Google Scholar 

  33. Ahmed Foskey TJ, Heinekey DM, Goldberg KI (2012) Partial deoxygenation of 1,2-propanediol catalyzed by iridium pincer complexes. ACS Catal 2:1285–1289

    CAS  Google Scholar 

  34. Lao DB, Owens ACE, Heinekey DM, Goldberg KI (2013) Partial deoxygenation of glycerol catalyzed by iridium pincer complexes. ACS Catal 3:2391–2396

    CAS  Google Scholar 

  35. Haynes A, Maitlis PM, Morris GE, Sunley GJ, Adams H, Badger PW, Bowers CM, Cook DB, Elliott PIP, Ghaffar T, Green H, Griffin TR, Payne M, Pearson JM, Taylor MJ, Vickers PW, Watt RJ (2004) Promotion of iridium-catalyzed methanol Carbonylation: mechanistic studies of the Cativa process. J Am Chem Soc 126:2847–2861

    CAS  PubMed  Google Scholar 

  36. Coskun T, Conifer CM, Stevenson LC, Britovsek GJP (2013) Carbodeoxygenation of biomass: the carbonylation of glycerol and higher polyols to monocarboxylic acids. Chem Eur J 19:6840–6844

    CAS  PubMed  Google Scholar 

  37. Crabtree RH (2019) Transfer hydrogenation with glycerol as H-donor: catalyst activation, deactivation and homogeneity. ACS Sustain Chem Eng 7:15845–15853

    CAS  Google Scholar 

  38. Farnetti E, Kašpar J, Crotti C (2009) A novel glycerol valorization route: chemoselective dehydrogenation catalyzed by iridium derivatives. Green Chem 11:704–770

    CAS  Google Scholar 

  39. Crotti C, Kašpar J, Farnetti E (2010) Dehydrogenation of glycerol to dihydroxyacetone catalyzed by iridium complexes with P–N ligands. Green Chem 12:1295–1300

    CAS  Google Scholar 

  40. Crotti C, Farnetti E, Guidolin N (2010) Alternative intermediates for glycerol valorization: iridium-catalyzed formation of acetals and ketals. Green Chem 12:2225–2231

    CAS  Google Scholar 

  41. Silva PHR, Gonçalves VLC, Mota CJA (2010) Glycerol acetals as anti-freezing additives for biodiesel. Bioresour Technol 101:6225–6229

    CAS  PubMed  Google Scholar 

  42. Deutsch J, Martin A, Lieske H (2007) Investigations on heterogeneously catalysed condensations of glycerol to cyclic acetals. J Catal 245:428–435

    CAS  Google Scholar 

  43. Cataldo M, Nieddu E, Gavagnin R, Pinna F, Strukul G (1999) Hydroxy complexes of palladium(II) and platinum(II) as catalysts for the acetalization of aldehydes and ketones. J Mol Catal A Chem 142:305–316

    CAS  Google Scholar 

  44. Chakrabarti K, Maji M, Kundu S (2019) Cooperative iridium complex-catalyzed synthesis of quinoxalines, benzimidazoles and quinazolines in water. Green Chem 21:1999–2004

    CAS  Google Scholar 

  45. Labed A, Jiang F, Labed I, Lator A, Peters M, Achard M, Kabouche A, Kabouche Z, Sharma GVM, Bruneau C (2015) Iridium-catalyzed sustainable access to functionalized Julolidines through hydrogen autotransfer. ChemCatChem 7:1090–1096

    CAS  Google Scholar 

  46. Minakawa M, Watanabe K, Toyoda S, Uozumi Y (2018) Iridium-catalyzed direct cyclization of aromatic amines with diols. Synlett 29:2385–2389

    CAS  Google Scholar 

  47. Lv D, Xie Z, Gu B, Wu H, Wan H (2016) Highly efficient synthesis of quinoxaline derivatives catalized by iridium complex. Russ J Gen Chem 86:2887–2890

    CAS  Google Scholar 

  48. Zhai XY, Wang XQ, Ding YX, Zhou YG (2019) Partially biobased polymers: the synthesis of polysilylethers via dehydrocoupling catalyzed by an anionic iridium complex. Chin Chem Lett:1–4

    Google Scholar 

  49. Xu Z, Yan P, Xu W, Liu X, Xia Z, Chung B, Jia S, Zhang ZC (2015) Hydrogenation/hydrolytic ring opening of 5-HMF by Cp∗-iridium(III) half-sandwich complexes for bioketones synthesis. ACS Catal 5:788–792

    CAS  Google Scholar 

  50. Wu WP, Xu YJ, Zhu R, Cui MS, Li XL, Deng J, Fu Y (2016) Selective conversion of 5-hydroxymethylfuraldehyde using Cp∗Ir catalysts in aqueous Formate buffer solution. ChemSusChem 9:1209–1215

    CAS  PubMed  Google Scholar 

  51. Xu YJ, Shi J, Wu WP, Zhu R, Li XL, Deng J, Fu Y (2017) Effect of Cp*iridium(III) complex and acid co-catalyst on conversion of furfural compounds to cyclopentanones or straight chain ketones. Appl Catal A 543:266–273

    CAS  Google Scholar 

  52. Xu Z, Yan P, Li H, Liu K, Liu X, Jia S, Zhang ZC (2016) Active Cp∗iridium(III) complex with ortho-hydroxyl group functionalized bipyridine ligand containing an electron-donating group for the production of diketone from 5-HMF. ACS Catal 6:3784–3788

    CAS  Google Scholar 

  53. Wozniak B, Spannenberg A, Li Y, Hinze S, de Vries JG (2018) Cyclopentanone derivatives from 5-hydroxymethylfurfural via 1-hydroxyhexane-2,5-dione as intermediate. ChemSusChem 11:356–359

    CAS  PubMed  Google Scholar 

  54. Van Putten RJ, Van Der Waal JC, De Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113:1499–1597

    PubMed  Google Scholar 

  55. Mika LT, Cséfalvay E, Németh Á (2018) Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability. Chem Rev 118:505–613

    CAS  PubMed  Google Scholar 

  56. Wang T, Nolte MW, Shanks BH (2014) Catalytic dehydration of C6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical. Green Chem 16:548–572

    CAS  Google Scholar 

  57. Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem 13:754–793

    CAS  Google Scholar 

  58. de Jong E, Dam MA, Sipos L, Gruter GJM (2012) Biobased monomers, polymers, and materials. In: ACS symposium series Ch. 1, 1–13, vol 1105. American Chemical Society

    Google Scholar 

  59. Haworth WN, Jones WGM (1944) The conversion of sucrose into Furan compounds. Part 1. 5-hydroxymethylfurfural and some derivatives. J Chem Soc:667–670

    Google Scholar 

  60. Mascal M, Nikitin EB (2008) Direct, high-yield conversion of cellulose into biofuel. Angew Chem Int Ed 47:7924–7926

    CAS  Google Scholar 

  61. Wozniak B, Tin S, de Vries JG (2019) Bio-based building blocks from 5-hydroxymethylfurfural via 1-hydroxyhexane-2,5-dione as intermediate. Chem Sci 10:6024–6034

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Mariscal R, Maireles-Torres P, Ojeda M, Sádaba I, López Granados M (2016) Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ Sci 9:1144–1189

    CAS  Google Scholar 

  63. Wu WP, Xu YJ, Chang SW, Deng J, Fu Y (2016) pH-regulated aqueous catalytic hydrogenation of biomass carbohydrate derivatives by using semisandwich iridium complexes. ChemCatChem 8:3375–3380

    CAS  Google Scholar 

  64. Townsend TM, Kirby C, Ruff A, O’Connor AR (2017) Transfer hydrogenation of aromatic and linear aldehydes catalyzed using Cp*Ir(pyridinesulfonamide)Cl complexes under base-free conditions. J Organomet Chem 843:7–13

    CAS  Google Scholar 

  65. Garhwal S, Maji B, Semwal S, Choudhury J (2018) Ambient-pressure and base-free aldehyde hydrogenation catalyst supported by a bifunctional abnormal NHC ligand. Organometallics 37:4720–4725

    CAS  Google Scholar 

  66. Thananatthanachon T, Rauchfuss TB (2010) Efficient route to hydroxymethylfurans from sugars via transfer hydrogenation. ChemSusChem 3:1139–1141

    CAS  PubMed  Google Scholar 

  67. Padilla R, Koranchalil S, Nielsen M (2020) Efficient and selective catalytic hydrogenation of furanic aldehydes using well defined Ru and Ir pincer complexes. Green Chem. https://doi.org/10.1039/D1030GC01543A

  68. Long J, Xu Y, Zhao W, Li H, Yang S (2019) Heterogeneous catalytic upgrading of biofuranic aldehydes to alcohols. Front Chem 7:529

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hayes DJ, Fitzpatrick S, Hayes MHB, Ross JRH (2008) Kamm B, Gruber PR, Kamm M (eds) Biorefineries-industrial processes and products. Wiley-VCH, Weinheim, pp 139–164

    Google Scholar 

  70. Alonso DM, Wettstein SG, Dumesic JA (2013) Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem 15:584–595

    CAS  Google Scholar 

  71. Deng J, Wang Y, Pan T, Xu Q, Guo QX, Fu Y (2013) Conversion of carbohydrate biomass to γ-valerolactone by using water-soluble and reusable iridium complexes in acidic aqueous media. ChemSusChem 6:1163–1167

    CAS  PubMed  Google Scholar 

  72. Wang S, Huang H, Dorcet V, Roisnel T, Bruneau C, Fischmeister C (2017) Efficient iridium catalysts for base-free hydrogenation of Levulinic acid. Organometallics 36:3152–3162

    CAS  Google Scholar 

  73. Padilla R, Jørgensen MSB, Paixão MW, Nielsen M (2019) Efficient catalytic hydrogenation of alkyl levulinates to γ-valerolactone. Green Chem 21:5195–5200

    CAS  Google Scholar 

  74. Li W, Xie JH, Lin H, Zhou QL (2012) Highly efficient hydrogenation of biomass-derived levulinic acid to γ-valerolactone catalyzed by iridium pincer complexes. Green Chem 14:2388–2390

    CAS  Google Scholar 

  75. Anjali K, Aswini MS, Aswin P, Ganesh V, Sakthivel A (2019) Iridium tetra(4-carboxyphenyl) porphyrin, calix[4]pyrrole and Tetraphenyl porphyrin complexes as potential hydrogenation catalysts. Eur J Inorg Chem 2019:4087–4094

    CAS  Google Scholar 

  76. Démolis A, Essayem N, Rataboul F (2014) Synthesis and applications of alkyl levulinates. ACS Sustain Chem Eng 2:1338–1352

    Google Scholar 

  77. Wang K, Heltzel J, Sandefur E, Culley K, Lemcoff G, Voutchkova-Kostal A (2020) Transfer hydrogenation of levulinic acid from glycerol and ethanol using water-soluble iridium N-heterocyclic carbene complexes. J Organomet Chem 919:121310–121310

    CAS  Google Scholar 

  78. Wang S, Huang H, Bruneau C, Fischmeister C (2017) Selective and efficient iridium catalyst for the reductive amination of levulinic acid into pyrrolidones. ChemSusChem 10:4150–4154

    CAS  PubMed  Google Scholar 

  79. Xu Z, Yan P, Jiang H, Liu K, Zhang ZC (2017) Iridium-catalyzed reductive amination of levulinic acid to pyrrolidinones under H2 in water. Chin J Chem 35:581–585

    CAS  Google Scholar 

  80. Wei Y, Wang C, Jiang X, Xue D, Li J, Xiao J (2013) Highly efficient transformation of levulinic acid into pyrrolidinones by iridium catalysed transfer hydrogenation. Chem Commun 49:5408–5410

    CAS  Google Scholar 

  81. Wang S, Huang H, Bruneau C, Fischmeister C (2019) Formic acid as a hydrogen source for the iridium-catalyzed reductive amination of levulinic acid and 2-formylbenzoic acid. Cat Sci Technol 9:4077–4082

    CAS  Google Scholar 

  82. Guan C, Pan YP, Zhang TH, Ajitha MJ, Huang KW (2020) An update on formic acid dehydrogenation by homogeneous catalysis. Chem Asian J 15:937–946

    CAS  PubMed  Google Scholar 

  83. Onishi N, Laurenczy G, Beller M, Himeda Y (2018) Recent progress for reversible homogeneous catalytic hydrogen storage in formic acid and in methanol. Coord Chem Rev 373:317–332

    CAS  Google Scholar 

  84. Wang S, Huang H, Roisnel T, Bruneau C, Fischmeister C (2019) Base-free dehydrogenation of aqueous and neat formic acid with iridium(III) Cp*(dipyridylamine) catalysts. ChemSusChem 12:179–184

    CAS  PubMed  Google Scholar 

  85. Li Y, Sponholz P, Nielsen M, Junge H, Beller M (2015) Iridium-catalyzed hydrogen production from monosaccharides, disaccharide, cellulose, and lignocellulose. ChemSusChem 8:804–808

    CAS  PubMed  Google Scholar 

  86. Cortright RD, Davda RR, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418:964–967

    CAS  PubMed  Google Scholar 

  87. Yoshida M, Hirahata R, Inoue T, Shimbayashi T, Fujita KI (2019) Iridium-catalyzed transfer hydrogenation of ketones and aldehydes using glucose as a sustainable hydrogen donor. Catalysts 9:503

    Google Scholar 

  88. Kumar A, Semwal S, Choudhury J (2019) Catalytic conversion of CO 2 to Formate with renewable hydrogen donors: an ambient-pressure and H 2 -independent strategy. ACS Catal 9:2164–2168

    CAS  Google Scholar 

  89. Semwal S, Kumar A, Choudhury J (2018) Iridium-NHC-based catalyst for ambient pressure storage and low temperature release of H2 via the CO2/HCO2H couple. Cat Sci Technol 8:6137–6142

    CAS  Google Scholar 

  90. Borja P, Vicent C, Baya M, García H, Mata JA (2018) Iridium complexes catalysed the selective dehydrogenation of glucose to gluconic acid in water. Green Chem 20:4094–4101

    CAS  Google Scholar 

  91. Mollar-Cuni A, Byrne JP, Borja P, Vicent C, Albrecht M, Mata JA (2020) Selective conversion of various monosaccharaides into sugar acids by additive-free dehydrogenation in water. ChemCatChem 12:3746–3752

    CAS  Google Scholar 

  92. Sun ZH, Fridrich B, de Santi A, Elangovan S, Barta K (2018) Bright side of lignin Depolymerization: toward new platform chemicals. Chem Rev 118:614–678

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Fache M, Boutevin B, Caillol S (2016) Vanillin production from lignin and its use as a renewable chemical. ACS Sustain Chem Eng 4:35–46

    CAS  Google Scholar 

  94. Zhu R, Wang B, Cui M, Deng J, Li X, Ma Y, Fu Y (2016) Chemoselective oxidant-free dehydrogenation of alcohols in lignin using Cp∗Ir catalysts. Green Chem 18:2029–2036

    CAS  Google Scholar 

  95. Lancefield CS, Teunissen LW, Weckhuysen BM, Bruijnincx PCA (2018) Iridium-catalysed primary alcohol oxidation and hydrogen shuttling for the depolymerisation of lignin. Green Chem 20:3214–3221

    CAS  Google Scholar 

  96. Deuss PJ, Scott M, Tran F, Westwood NJ, de Vries JG, Barta K (2015) Aromatic monomers by in situ conversion of reactive intermediates in the acid-catalyzed depolymerization of lignin. J Am Chem Soc 137:7456–7467

    CAS  PubMed  Google Scholar 

  97. Zhang Z, Ziijlstra DS, Lahive CW, Deuss PJ (2020) Combined lignin defunctionalisation and synthesis gas formation by acceptorless dehydrogenative decarbonylation. Green Chem:4778523

    Google Scholar 

  98. Olsen EPK, Madsen R (2012) Iridium-catalyzed dehydrogenative decarbonylation of primary alcohols with the liberation of syngas. Chem Eur J 18:16023–16029

    CAS  PubMed  Google Scholar 

  99. Biermann U, Bornscheuer U, Meier MAR, Metzger JO, Schafer HJ (2011) Oils and fats as renewable raw materials in chemistry. Angew Chem Int Ed 50:3854–3871

    CAS  Google Scholar 

  100. Mishra VK, Goswami R (2018) A review of production, properties and advantages of biodiesel. Biofuels 9:273–289

    CAS  Google Scholar 

  101. Lu Z, Cherepakhin V, Kapenstein T, Williams TJ (2018) Upgrading biodiesel from vegetable oils by hydrogen transfer to its fatty esters. ACS Sustain Chem Eng 6:5749–5753

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kovács J, Todd TD, Reibenspies JH, Joó F, Darensbourg DJ (2000) Water-soluble organometallic compounds. 9. Catalytic hydrogenation and selective isomerization of olefins by water-soluble analogues of Vaska’s complex. Organometallics 19:3963–3969

    Google Scholar 

  103. de Vries JG, Deuss PJ, Barta K (2017) Kamer PCJ, Vogt D, Thybaut J (eds) Contemporary catalysis: science, technology, and applications. Royal Society of Chemistry, London, pp 29–73

    Google Scholar 

  104. Ternel J, Lebarbé T, Monflier E, Hapiot F (2015) Catalytic decarbonylation of biosourced substrates. ChemSusChem 8:1585–1592

    CAS  PubMed  Google Scholar 

  105. Maetani S, Fukuyama T, Suzuki N, Ishihara D, Ryu I (2011) Efficient iridium-catalyzed decarbonylation reaction of aliphatic carboxylic acids leading to internal or terminal alkenes. Organometallics 30:1389–1394

    CAS  Google Scholar 

  106. Ternel J, Léger B, Monflier E, Hapiot F (2018) Amines as effective ligands in iridium-catalyzed decarbonylative dehydration of biosourced substrates. Cat Sci Technol 8:3948–3953

    CAS  Google Scholar 

  107. Ternel J, Couturier JL, Dubois JL, Carpentier JF (2015) Rhodium versus iridium catalysts in the controlled tandem hydroformylation-isomerization of functionalized unsaturated fatty substrates. ChemCatChem 7:513–520

    CAS  Google Scholar 

  108. Miao X, Fischmeister C, Dixneuf PH, Bruneau C, Dubois JL, Couturier JL (2012) Polyamide precursors from renewable 10-undecenenitrile and methyl acrylate via olefin cross-metathesis. Green Chem 14:2179–2183

    CAS  Google Scholar 

  109. Ternel J, Couturier JL, Dubois JL, Carpentier JF (2013) Rhodium-catalyzed tandem isomerization/hydroformylation of the bio-sourced 10-undecenenitrile: selective and productive catalysts for production of polyamide-12 precursor. Adv Synth Catal 355:3191–3204

    CAS  Google Scholar 

  110. Huber T, Firlbeck D, Riepl HM (2013) Iridium-catalysed isomerising trialkylsilylation of methyl oleateq. J Organomet Chem 744:144–148

    CAS  Google Scholar 

  111. Lu B, Falck JR (2010) Iridium-catalyzed (Z)-trialkylsilylation of terminal olefins. J Org Chem 75:1701–1705

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ghebreyessus KY, Angelici RJ (2006) Isomerizing-hydroboration of the monounsaturated fatty acid ester methyl oleate. Organometallics 25:3040–3044

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes G. de Vries .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kirchhecker, S., Spiegelberg, B., de Vries, J.G. (2020). Homogenous Iridium Catalysts for Biomass Conversion. In: Oro, L.A., Claver, C. (eds) Iridium Catalysts for Organic Reactions. Topics in Organometallic Chemistry, vol 69. Springer, Cham. https://doi.org/10.1007/3418_2020_72

Download citation

Publish with us

Policies and ethics