Skip to main content

Cooperative Reactivity by Pincer-Type Complexes Possessing Secondary Coordination Sphere

  • Chapter
  • First Online:
Metal-Ligand Co-operativity

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 68))

  • 1136 Accesses

Abstract

Pincer complexes represent a family of potent compounds having a tremendous number of manifold applications in organometallic chemistry, synthesis, catalysis, materials science, and bioinorganic chemistry. This chapter overviews the recent developments in the chemistry and catalytic applications of pincer complexes incorporating secondary coordination sphere or an appended functionality that can interact with the catalytic center or can modulate its reactivity via secondary substrate-catalyst interactions. Combining the concepts of modular and stable pincer ligands and secondary interactions provides excellent opportunities for fine-tuning the properties of a coordinated metal center and, consequently, attracts considerable interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BArF4:

Tetrakis(pentafluorophenyl)borate

B(sia)2:

Diisoamylborane

BBN:

9-Borabicyclo[3.3.1]nonyl

BnOH:

Benzyl alcohol

BPin:

4,4,5,5-Tetramethyl-1,2,2-dioxoboryl

COD:

1,5-Cyclooctadiene

Cp*:

Pentamethylcyclopentadienyl

DME:

Dimethoxyethane

FA:

Formic acid

KC8:

Potassium graphite

kPa:

Kilopascal

MOM:

Methoxymethyl

NHC:

N-heterocyclic carbenes

RNA:

Ribonucleic acid

RT:

Room temperature

TOF:

Turnover frequency

TON:

Turnover number

TS:

Transition state

Ts:

Toluenesulfonyl

References

  1. van Koten G (2013) Pincer ligands as powerful tools for catalysis in organic synthesis. J Organomet Chem 730:156–164. https://doi.org/10.1016/j.jorganchem.2012.12.035

    Article  CAS  Google Scholar 

  2. Deng Q-H, Melen RL, Gade LH (2014) Anionic chiral tridentate N-donor pincer ligands in asymmetric catalysis. Acc Chem Res 47(10):3162–3173. https://doi.org/10.1021/ar5002457

    Article  CAS  PubMed  Google Scholar 

  3. Asay M, Morales-Morales D (2015) Non-symmetric pincer ligands: complexes and applications in catalysis. Dalton Trans 44(40):17432–17447. https://doi.org/10.1039/C5DT02295A

    Article  CAS  PubMed  Google Scholar 

  4. Andrew RE, Gonzalez-Sebastian L, Chaplin AB (2016) NHC-based pincer ligands: carbenes with a bite. Dalton Trans 45(4):1299–1305. https://doi.org/10.1039/C5DT04429D

    Article  CAS  PubMed  Google Scholar 

  5. Melen RL, Gade LH (2016) New chemistry with anionic NNN pincer ligands. Top Organomet Chem 54:179–208. https://doi.org/10.1007/3418_2015_114

    Article  CAS  Google Scholar 

  6. Lawrence MAW, Green K-A, Nelson PN, Lorraine SC (2018) Review: pincer ligands-tunable, versatile and applicable. Polyhedron 143:11–27. https://doi.org/10.1016/j.poly.2017.08.017

    Article  CAS  Google Scholar 

  7. Maser L, Vondung L, Langer R (2018) The ABC in pincer chemistry - from amine- to borylene- and carbon-based pincer-ligands. Polyhedron 143:28–42. https://doi.org/10.1016/j.poly.2017.09.009

    Article  CAS  Google Scholar 

  8. Alig L, Fritz M, Schneider S (2019) First-row transition metal (De)hydrogenation catalysis based on functional pincer ligands. Chem Rev 119(4):2681–2751. https://doi.org/10.1021/acs.chemrev.8b00555

    Article  CAS  PubMed  Google Scholar 

  9. Albrecht M, van Koten G (2001) Platinum group organometallics based on "pincer" complexes: sensors, switches, and catalysts. Angew Chem Int Ed 40(20):3750–3781. https://doi.org/10.1002/1521-3773(20011015)40:20<3750::AID-ANIE3750>3.0.CO;2-6

    Article  CAS  Google Scholar 

  10. Wieczorek B, Dijkstra HP, Egmond MR, Klein Gebbink RJM, van Koten G (2009) Incorporating ECE-pincer metal complexes as functional building blocks in semisynthetic metalloenzymes, supramolecular polypeptide hybrids, tamoxifen derivatives, biomarkers and sensors. J Organomet Chem 694(6):812–822. https://doi.org/10.1016/j.jorganchem.2008.12.010

    Article  CAS  Google Scholar 

  11. Suijkerbuijk BMJM, Schamhart DJ, Kooijman H, Spek AL, van Koten G, Klein Gebbink RJM (2010) Mono(NCN-pincer palladium)-metalloporphyrin catalysts: evidence for supramolecular bimetallic catalysis. Dalton Trans 39:6198–6216. https://doi.org/10.1039/b925236n

    Article  CAS  PubMed  Google Scholar 

  12. Jurgens S, Kuhn FE, Casini A (2018) Cyclometalated complexes of platinum and gold with biological properties: state-of-the-art and future perspectives. Curr Med Chem 25(4):437–461. https://doi.org/10.2174/0929867324666170529125229

    Article  CAS  PubMed  Google Scholar 

  13. Junge K, Papa V, Beller M (2019) Cobalt-pincer complexes in catalysis. Chem Eur J 25(1):122–143. https://doi.org/10.1002/chem.201803016

    Article  CAS  PubMed  Google Scholar 

  14. Liu J-K, Gong J-F, Song M-P (2019) Chiral palladium pincer complexes for asymmetric catalytic reactions. Org Biomol Chem 17(25):6069–6098. https://doi.org/10.1039/c9ob00401g

    Article  CAS  PubMed  Google Scholar 

  15. Dehand J, Pfeffer M (1976) Cyclometallated compounds. Coord Chem Rev 18(3):327–352. https://doi.org/10.1016/s0010-8545(00)80431-2

    Article  CAS  Google Scholar 

  16. Shaw BL (1975) Formation of large rings, internal metalation reactions, and internal entropy effects. J Am Chem Soc 97(13):3856–3857. https://doi.org/10.1021/ja00846a072

    Article  CAS  Google Scholar 

  17. Riehl JF, Jean Y, Eisenstein O, Pelissier M (1992) Theoretical study of the structures of electron-deficient d6 ML5 Pi complexes. Importance of a .Pi.-donating ligand. Organometallics 11(2):729–737. https://doi.org/10.1021/om00038a035

  18. van de Kuil LA, Luitjes H, Grove DM, Zwikker JW, van der Linden JGM, Roelofsen AM, Jenneskens LW, Drenth W, van Koten G (1994) Electronic tuning of arylnickel(II) complexes by para substitution of the terdentate monoanionic 2,6-bis[(dimethylamino)methyl]phenyl ligand. Organometallics 13:468–477. https://doi.org/10.1021/om00014a020

    Article  Google Scholar 

  19. Mohammad HAY, Grimm JC, Eichele K, Mack H-G, Speiser B, Novak F, Quintanilla MG, Kaska WC, Mayer HA (2002) C−H oxidative addition with a (PCP)Ir(III)-pincer complex. Organometallics 21(26):5775–5784. https://doi.org/10.1021/om020621w

    Article  CAS  Google Scholar 

  20. Batema GD, Lutz M, Spek AL, van Walree CA, de Mello DC, Meijerink A, Havenith RWA, Perez-Moreno J, Clays K, Buechel M, van Dijken A, Bryce DL, van Klink GPM, van Koten G (2008) Substituted 4,4′-stilbenoid NCN-pincer platinum(II) complexes. Luminescence and tuning of the electronic and NLO properties and the application in an OLED. Organometallics 27(8):1690–1701. https://doi.org/10.1021/om700352z

    Article  CAS  Google Scholar 

  21. Roddick DM (2013) Tuning of PCP pincer ligand electronic and steric properties. Top Organomet Chem 40:49–88. https://doi.org/10.1007/978-3-642-31081-2_3

    Article  CAS  Google Scholar 

  22. Crocker C, Empsall HD, Errington RJ, Hyde EM, McDonald WS, Markham R, Norton MC, Shaw BL, Weeks B (1982) Transition metal–carbon bonds. Part 52. Large ring and cyclometallated complexes formed from But2PCH2CH2CHRCH2CH2PBut2(R= H or Me) and IrCl3, or [Ir2Cl4(cyclo-octene)4] : crystal structures of the cyclometallated hydride, [IrHCl(But2PCH2CH2CHCH2CH2PBut2)], and the carbene complex [IrCl(But2PCH2CH2CCH2CH2PBut2)]. J Chem Soc Dalton Trans 7:1217–1224

    Google Scholar 

  23. Errington RJ, McDonald WS, Shaw BL (1982) Transition metal-carbon bonds. Part 54. Complexes of palladium, platinum, rhodium, and iridium with (Me3C)2PCH2CHMe(CH2)3P(CMe3)2. Crystal structures of [2-methyl-1,5-bis(di-tert-butylphosphino)pent-3-yl-C3 PP']chloropalladium(II) and -chlorohydridoiridium(III). J Chem Soc Dalton Trans:1829–1835

    Google Scholar 

  24. Vigalok A, Milstein D (2000) Direct synthesis of thermally stable PCP-type rhodium carbenes. Organometallics 19(11):2061–2064. https://doi.org/10.1021/om990764r

    Article  CAS  Google Scholar 

  25. Polukeev AV, Wendt OF (2018) Iridium complexes with aliphatic, non-innocent pincer ligands. J Organomet Chem 867:33–50. https://doi.org/10.1016/j.jorganchem.2017.12.009

    Article  CAS  Google Scholar 

  26. O'Reilly ME, Veige AS (2014) Trianionic pincer and pincer-type metal complexes and catalysts. Chem Soc Rev 43(17):6325–6369. https://doi.org/10.1039/C4CS00111G

    Article  CAS  PubMed  Google Scholar 

  27. Chakraborty S, Bhattacharya P, Dai H, Guan H (2015) Nickel and Iron pincer complexes as catalysts for the reduction of carbonyl compounds. Acc Chem Res 48(7):1995–2003. https://doi.org/10.1021/acs.accounts.5b00055

    Article  CAS  PubMed  Google Scholar 

  28. Kumar A, Bhatti TM, Goldman AS (2017) Dehydrogenation of alkanes and aliphatic groups by pincer-ligated metal complexes. Chem Rev 117(19):12357–12384. https://doi.org/10.1021/acs.chemrev.7b00247

    Article  CAS  PubMed  Google Scholar 

  29. Noyori R, Yamakawa M, Hashiguchi S (2001) Metal-ligand bifunctional catalysis: a nonclassical mechanism for asymmetric hydrogen transfer between alcohols and carbonyl compounds. J Org Chem 66(24):7931–7944. https://doi.org/10.1021/jo010721w

    Article  CAS  PubMed  Google Scholar 

  30. Clapham SE, Hadzovic A, Morris RH (2004) Mechanisms of the H2-hydrogenation and transfer hydrogenation of polar bonds catalyzed by ruthenium hydride complexes. Coord Chem Rev 248(21–24):2201–2237. https://doi.org/10.1016/j.ccr.2004.04.007

    Article  CAS  Google Scholar 

  31. Ikariya T, Murata K, Noyori R (2006) Bifunctional transition metal-based molecular catalysts for asymmetric syntheses. Org Biomol Chem 4(3):393–406

    Article  CAS  Google Scholar 

  32. Fryzuk MD, MacNeil PA (1983) Amides of rhodium and iridium stabilized as hybrid multidentate ligands. Organometallics 2:355–356. https://doi.org/10.1021/om00074a030

    Article  CAS  Google Scholar 

  33. Zhang J, Leitus G, Ben-David Y, Milstein D (2005) Facile conversion of alcohols into esters and dihydrogen catalyzed by new ruthenium complexes. J Am Chem Soc 127(31):10840–10841. https://doi.org/10.1021/ja052862b

    Article  CAS  PubMed  Google Scholar 

  34. Deeken S, Motz G, Kempe R (2007) How common are true aminopyridinato complexes? Z Anorg Allg Chem 633(2):320–325. https://doi.org/10.1002/zaac.200600269

    Article  CAS  Google Scholar 

  35. Gunanathan C, Gnanaprakasam B, Iron MA, Shimon LJW, Milstein D (2010) "Long-range" metal-ligand cooperation in H2 activation and ammonia-promoted hydride transfer with a ruthenium acridine pincer complex. J Am Chem Soc 132(42):14763–14765. https://doi.org/10.1021/ja107770y

    Article  CAS  PubMed  Google Scholar 

  36. Li H, Zheng B, Huang K-W (2015) A new class of PN3-pincer ligands for metal-ligand cooperative catalysis. Coord Chem Rev 293-294:116–138. https://doi.org/10.1016/j.ccr.2014.11.010

    Article  CAS  Google Scholar 

  37. Goncalves TP, Huang K-W (2017) Metal-ligand cooperative reactivity in the (pseudo)-dearomatized PNx(P) systems: the influence of the zwitterionic form in dearomatized pincer complexes. J Am Chem Soc 139(38):13442–13449. https://doi.org/10.1021/jacs.7b06305

  38. Mastalir M, Glatz M, Pittenauer E, Allmaier G, Kirchner K (2019) Rhenium-catalyzed dehydrogenative coupling of alcohols and amines to afford nitrogen-containing aromatics and more. Org Lett 21(4):1116–1120. https://doi.org/10.1021/acs.orglett.9b00034

    Article  CAS  PubMed  Google Scholar 

  39. Clarke ZE, Maragh PT, Dasgupta TP, Gusev DG, Lough AJ, Abdur-Rashid K (2006) A family of active iridium catalysts for transfer hydrogenation of ketones. Organometallics 25(17):4113–4117. https://doi.org/10.1021/om060049z

    Article  CAS  Google Scholar 

  40. Vasudevan KV, Scott BL, Hanson SK (2012) Alkene hydrogenation catalyzed by nickel hydride complexes of an aliphatic PNP pincer ligand. Eur J Inorg Chem 2012(30):4898–4906. https://doi.org/10.1002/ejic.201200758

    Article  CAS  Google Scholar 

  41. Schneider S, Meiners J, Askevold B (2012) Cooperative aliphatic PNP amido pincer ligands - versatile building blocks for coordination chemistry and catalysis. Eur J Inorg Chem 2012(3):412–429. https://doi.org/10.1002/ejic.201100880

    Article  CAS  Google Scholar 

  42. Wang Z, Chen X, Liu B, Q-b L, Solan GA, Yang X, Sun W-H (2017) Cooperative interplay between a flexible PNN-Ru(II) complex and a NaBH4 additive in the efficient catalytic hydrogenation of esters. Cat Sci Technol 7(6):1297–1304. https://doi.org/10.1039/C6CY02413K

    Article  CAS  Google Scholar 

  43. Empsall HD, Hyde EM, Markham R, McDonald WS, Norton MC, Shaw BL, Weeks B (1977) Synthesis and X-ray structure of an unusual iridium ylide or carbene complex. J Chem Soc Chem Commun 17:589–590

    Article  Google Scholar 

  44. Crocker C, Errington RJ, McDonald WS, Odell KJ, Shaw BL, Goodfellow RJ (1979) Rapid reversible fission of a carbon-hydrogen bond in a metal complex: X-ray crystal structure of cyclometalated rhodium complex. J Chem Soc Chem Commun 11:498–499. https://doi.org/10.1039/DT9820001217

    Article  Google Scholar 

  45. Bernard LS (1980) Some steric, conformational and entropy effects of tertiary phosphine ligands. J Organomet Chem 200(1):307–318. https://doi.org/10.1016/s0022-328x(00)88652-0

    Article  Google Scholar 

  46. Leis W, Mayer HA, Kaska WC (2008) Cycloheptatrienyl, alkyl and aryl PCP-pincer complexes: ligand backbone effects and metal reactivity. Coord Chem Rev 252(15–17):1787–1797

    Article  CAS  Google Scholar 

  47. Winter AM, Eichele K, Mack H-G, Kaska WC, Mayer HA (2008) Prototropic rearrangements in cycloheptatrienyl PCP pincer iridium complexes. Dalton Trans:527–532. https://doi.org/10.1039/b712712j

  48. Gelman D, Romm R (2013) PC(sp3)P transition metal pincer complexes: properties and catalytic applications. Top Organomet Chem 40:289–318. https://doi.org/10.1007/978-3-642-31081-2_10

    Article  CAS  Google Scholar 

  49. Moore CM, Szymczak NK (2014) Appended functionality in pincer ligands. Wiley, pp 71–94. https://doi.org/10.1002/9783527681303.ch3

  50. McDonald AR, Dijkstra HP (2016) Tethered pincer complexes as recyclable homogeneous catalysts. Top Organomet Chem 54:335–369. https://doi.org/10.1007/3418_2015_124

    Article  CAS  Google Scholar 

  51. Hale LVA, Szymczak NK (2018) Hydrogen transfer catalysis beyond the primary coordination sphere. ACS Catal 8(7):6446–6461. https://doi.org/10.1021/acscatal.7b04216

    Article  CAS  Google Scholar 

  52. Balakrishna MS (2018) Unusual and rare pincer ligands: synthesis, metallation, reactivity and catalytic studies. Polyhedron 143:2–10. https://doi.org/10.1016/j.poly.2017.07.026

    Article  CAS  Google Scholar 

  53. Sawamura M, Ito Y (1992) Catalytic asymmetric synthesis by means of secondary interaction between chiral ligands and substrates. Chem Rev 92(5):857–871. https://doi.org/10.1021/cr00013a005

    Article  CAS  Google Scholar 

  54. McLain SJ (1983) Organometallic crown ethers. 1. Metal-acyl binding to a crown ether-held cation. J Am Chem Soc 105(20):6355–6357. https://doi.org/10.1021/ja00358a051

    Article  CAS  Google Scholar 

  55. Komarov IV, Gorichko MV, Kornilov MY (1997) Synthesis of chiral functionalized phosphine ligands based on camphor skeleton. Tetrahedron Asymmetry 8(3):435–445. https://doi.org/10.1016/S0957-4166(97)00003-7

    Article  CAS  Google Scholar 

  56. Landis CR, Sawyer RA, Somsook E (2000) Synthesis and characterization of a chiral, Aza-15-Crown-5-functionalized ferrocenyldiphosphine ligand for asymmetric catalysis. Organometallics 19(6):994–1002. https://doi.org/10.1021/om990391u

    Article  CAS  Google Scholar 

  57. Malkov AV, Mariani A, MacDougall KN, Kocovsky P (2004) Role of noncovalent interactions in the Enantioselective reduction of aromatic Ketimines with Trichlorosilane. Org Lett 6(13):2253–2256. https://doi.org/10.1021/ol049213+

    Article  CAS  PubMed  Google Scholar 

  58. Albano VG, Bandini M, Melucci M, Monari M, Piccinelli F, Tommasi S, Umani-Ronchi A (2005) Novel chiral diamino-oligothiophenes as valuable ligands in Pd-catalyzed allylic alkylations. On the "primary" role of "secondary" interactions in asymmetric catalysis. Adv Synth Catal 347(11–13):1507–1512. https://doi.org/10.1002/adsc.200505109

    Article  CAS  Google Scholar 

  59. Gibson SE, Rudd M (2007) The role of secondary interactions in the asymmetric palladium-catalyzed hydrosilylation of olefins with monophosphine ligands. Adv Synth Catal 349(6):781–795. https://doi.org/10.1002/adsc.200600458

    Article  CAS  Google Scholar 

  60. Andrushko V, Andrushko N, Boerner A (2008) P-ligands with additional functional groups - concepts of secondary interactions and hemilability. Wiley, pp 886–914

    Google Scholar 

  61. Das S, Incarvito CD, Crabtree RH, Brudvig GW (2006) Molecular recognition in the selective oxygenation of saturated C-H bonds by a dimanganese catalyst. Science 312(5782):1941–1943. https://doi.org/10.1126/science.1127899

    Article  CAS  PubMed  Google Scholar 

  62. Gosiewska S, Herreras Martinez S, Lutz M, Spek AL, van Koten G, Klein Gebbink RJM (2006) Diastereopure cationic NCN-pincer palladium complexes with square planar η4-N,C,N,O coordination. Eur J Inorg Chem 2006(22):4600–4607. https://doi.org/10.1002/ejic.200600508

    Article  CAS  Google Scholar 

  63. Gosiewska S, Huis M, de Pater JJ, Bruijnincx PC, Lutz M, Spek AL, van Koten G, Gebbink RJK (2006) Novel enantiopure non-C2-symmetric NCN-pincer palladium complexes with L-proline chiral auxiliaries: mer η3-N,C,N versus square planar η4-N,C,N,O coordination. Tetrahedron Asymmetry 17:674–686. https://doi.org/10.1016/j.tetasy.2005.12.040

    Article  CAS  Google Scholar 

  64. Gosiewska S, Martinez Herreras S, Lutz M, Spek AL, Havenith RWA, van Klink GPM, van Koten G, Klein Gebbink RJM (2008) Synthesis, structure, and catalytic performance of diastereopure five-coordinated NCN-pincer palladium(II) complexes bearing bulky amino acid substituents. Organometallics 27(11):2549–2559. https://doi.org/10.1021/om701261q

    Article  CAS  Google Scholar 

  65. Holz J, Sturmer R, Schmidt U, Drexler H-J, Heller D, Krimmer H-P, Borner A (2001) Synthesis of chiral 2,5-bis(oxymethyl)-functionalized bis(phospholanes) and their application in Rh- and Ru-catalyzed enantioselective hydrogenations. Eur J Org Chem 24:4615–4624. https://doi.org/10.1002/1099-0690(200112)2001:24<4615::AID-EJOC4615>3.0.CO;2-N

    Article  Google Scholar 

  66. Borner A (2001) The effect of internal hydroxy groups in chiral diphosphane rhodium(I) catalysts on the asymmetric hydrogenation of functionalized olefins. Eur J Inorg Chem 2:327–337. https://doi.org/10.1002/1099-0682(200102)2001:2<327::AID-EJIC327>3.0.CO;2-A

    Article  Google Scholar 

  67. Jia X, Zhang L, Qin C, Leng X, Huang Z (2014) Iridium complexes of new NCP pincer ligands: catalytic alkane dehydrogenation and alkene isomerization. Chem Commun 50(75):11056–11059. https://doi.org/10.1039/C3CC46851H

    Article  CAS  Google Scholar 

  68. Wang Y, Qin C, Jia X, Leng X, Huang Z (2017) An Agostic iridium pincer complex as a highly efficient and selective catalyst for monoisomerization of 1-alkenes to trans-2-alkenes. Angew Chem Int Ed 56(6):1614–1618. https://doi.org/10.1002/anie.201611007

    Article  CAS  Google Scholar 

  69. Kita MR, Miller AJM (2014) Cation-modulated reactivity of iridium hydride pincer-crown ether complexes. J Am Chem Soc 136(41):14519–14529. https://doi.org/10.1021/ja507324s

    Article  CAS  PubMed  Google Scholar 

  70. Smith JB, Kerr SH, White PS, Miller AJM (2017) Thermodynamic studies of cation-macrocycle interactions in nickel pincer-crown ether complexes enable switchable ligation. Organometallics 36(16):3094–3103. https://doi.org/10.1021/acs.organomet.7b00431

    Article  CAS  Google Scholar 

  71. Camp AM, Kita MR, Grajeda J, White PS, Dickie DA, Miller AJM (2017) Mapping the binding modes of hemilabile pincer-crown ether ligands in solution using diamagnetic anisotropic effects on NMR chemical shift. Inorg Chem 56(18):11141–11150. https://doi.org/10.1021/acs.inorgchem.7b01485

    Article  CAS  PubMed  Google Scholar 

  72. Grajeda J, Kita MR, Gregor LC, White PS, Miller AJM (2016) Diverse cation-promoted reactivity of iridium carbonyl pincer-crown ether complexes. Organometallics 35(3):306–316. https://doi.org/10.1021/acs.organomet.5b00786

    Article  CAS  Google Scholar 

  73. Kita MR, Miller AJM (2017) An ion-responsive pincer-crown ether catalyst system for rapid and switchable olefin isomerization. Angew Chem Int Ed 56(20):5498–5502. https://doi.org/10.1002/anie.201701006

    Article  CAS  Google Scholar 

  74. Lesueur W, Solari E, Floriani C, Chiesi-Villa A, Rizzoli C (1997) A bidentate bisphosphine functioning in intramolecular aliphatic metalation and as an NMR spectroscopic probe for the metal coordination environment. Inorg Chem 36:3354–3362. https://doi.org/10.1021/ic9700819

    Article  CAS  PubMed  Google Scholar 

  75. Weng W, Parkin S, Ozerov OV (2006) Double C-H activation results in ruthenium complexes of a neutral PCP ligand with a central carbene moiety. Organometallics 25:5345–5354. https://doi.org/10.1021/om060464r

    Article  CAS  Google Scholar 

  76. Gelman D, Musa S (2012) Coordination versatility of sp3-hybridized pincer ligands toward ligand-metal cooperative catalysis. ACS Catal 2:2456–2466. https://doi.org/10.1021/cs3005083

    Article  CAS  Google Scholar 

  77. Cohen S, Borin V, Schapiro I, Musa S, De-Botton S, Belkova NV, Gelman D (2017) Ir(III)-PC(sp3)P bifunctional catalysts for production of H2 by dehydrogenation of formic acid: experimental and theoretical study. ACS Catal 7(12):8139–8146. https://doi.org/10.1021/acscatal.7b02482

    Article  CAS  Google Scholar 

  78. Musa S, Shaposhnikov I, Cohen S, Gelman D (2011) Ligand-metal cooperation in PCP pincer complexes: rational design and catalytic activity in acceptorless dehydrogenation of alcohols. Angew Chem Int Ed 50:3533–3537. https://doi.org/10.1002/anie.201007367

    Article  CAS  Google Scholar 

  79. De-Botton S, Romm R, Bensoussan G, Hitrik M, Musa S, Gelman D (2016) Coordination versatility of p-hydroquinone-functionalized dibenzobarrelene-based PC(sp3)P pincer ligands. Dalton Trans 45(40):16040–16046. https://doi.org/10.1039/C6DT02201D

    Article  CAS  PubMed  Google Scholar 

  80. De-Botton S, Cohen S, Gelman D (2018) Iridium PC(sp3)P pincer complexes with Hemilabile pendant arms: synthesis, characterization, and catalytic activity. Organometallics 37(8):1324–1330. https://doi.org/10.1021/acs.organomet.8b00105

    Article  CAS  Google Scholar 

  81. Musa S, Shpruhman A, Gelman D (2012) New PC(sp3)P pincer complexes of platinum and palladium. J Organomet Chem 699:92–95. https://doi.org/10.1016/j.jorganchem.2011.11.007

    Article  CAS  Google Scholar 

  82. Musa S, Ghosh A, Vaccaro L, Ackermann L, Gelman D (2015) Efficient E-selective transfer semihydrogenation of alkynes by means of ligand-metal cooperating ruthenium catalyst. Adv Synth Catal 357(10):2351–2357. https://doi.org/10.1002/adsc.201500372

    Article  CAS  Google Scholar 

  83. Musa S, Fronton S, Vaccaro L, Gelman D (2013) Bifunctional ruthenium(II) PCP pincer complexes and their catalytic activity in acceptorless dehydrogenative reactions. Organometallics 32(10):3069–3073. https://doi.org/10.1021/om400285r

    Article  CAS  Google Scholar 

  84. Musa S, Filippov OA, Belkova NV, Shubina ES, Silantyev GA, Ackermann L, Gelman D (2013) Ligand-metal cooperating PC(sp3)P pincer complexes as catalysts in olefin hydroformylation. Chem Eur J 19(50):16906–16909. https://doi.org/10.1002/chem.201303311

    Article  CAS  PubMed  Google Scholar 

  85. Musa S, Ackermann L, Gelman D (2013) Dehydrogenative cross-coupling of primary and secondary alcohols. Adv Synth Catal 355(14–15):3077–3080. https://doi.org/10.1002/adsc.201300656

    Article  CAS  Google Scholar 

  86. Bertini F, Glatz M, Stoger B, Peruzzini M, Veiros LF, Kirchner K, Gonsalvi L (2019) Carbon dioxide reduction to methanol catalyzed by Mn(I) PNP pincer complexes under mild reaction conditions. ACS Catal 9(1):632–639. https://doi.org/10.1021/acscatal.8b04106

    Article  CAS  Google Scholar 

  87. Bernskoetter WH, Hazari N (2017) Reversible hydrogenation of carbon dioxide to formic acid and methanol: Lewis acid enhancement of base metal catalysts. Acc Chem Res 50(4):1049–1058. https://doi.org/10.1021/acs.accounts.7b00039

    Article  CAS  PubMed  Google Scholar 

  88. Celaje JJA, Lu Z, Kedzie EA, Terrile NJ, Lo JN, Williams TJ (2016) A prolific catalyst for dehydrogenation of neat formic acid. Nat Commun 7:11308. https://doi.org/10.1038/ncomms11308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Boddien A, Mellmann D, Gaertner F, Jackstell R, Junge H, Dyson PJ, Laurenczy G, Ludwig R, Beller M (2011) Efficient dehydrogenation of formic acid using an Iron catalyst. Science 333(6050):1733–1736. https://doi.org/10.1126/science.1206613

    Article  CAS  PubMed  Google Scholar 

  90. Fukuzumi S, Yamada Y, Suenobu T, Ohkubo K, Kotani H (2011) Catalytic mechanisms of hydrogen evolution with homogeneous and heterogeneous catalysts. Energy Environ Sci 4(8):2754–2766. https://doi.org/10.1039/c1ee01551f

    Article  CAS  Google Scholar 

  91. Luo Q, Beller M, Jiao H (2013) Formic acid dehydrogenation on surfaces - a review of computational aspects. J Theor Comput Chem 12(7):1330001/1330001–1330001/1330028. https://doi.org/10.1142/s0219633613300012

    Article  Google Scholar 

  92. Yang X (2013) Mechanistic insights into iron catalyzed dehydrogenation of formic acid: β-hydride elimination vs. direct hydride transfer. Dalton Trans 42:11987–11991. https://doi.org/10.1039/c3dt50908g

    Article  CAS  PubMed  Google Scholar 

  93. Jongbloed LS, de Bruin B, Reek JNH, Lutz M, van der Vlugt JI (2016) Reversible cyclometalation at RhI as a motif for metal-ligand bifunctional bond activation and base-free formic acid dehydrogenation. Cat Sci Technol 6(5):1320–1327. https://doi.org/10.1039/C5CY01505G

    Article  CAS  Google Scholar 

  94. Tutusaus O, Ni C, Szymczak NK (2013) A transition metal Lewis acid/base triad system for cooperative substrate binding. J Am Chem Soc 135(9):3403–3406. https://doi.org/10.1021/ja400962h

    Article  CAS  PubMed  Google Scholar 

  95. Yoshinari A, Tazawa A, Kuwata S, Ikariya T (2012) Synthesis, structures, and Reactivities of pincer-type ruthenium complexes bearing two proton-responsive Pyrazole arms. Chem Asian J 7(6):1417–1425. https://doi.org/10.1002/asia.201200014

    Article  CAS  PubMed  Google Scholar 

  96. Kiernicki JJ, Zeller M, Szymczak NK (2017) Hydrazine capture and N-N bond cleavage at Iron enabled by flexible appended Lewis acids. J Am Chem Soc 139(50):18194–18197. https://doi.org/10.1021/jacs.7b11465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kiernicki JJ, Zeller M, Szymczak NK (2019) Requirements for Lewis acid-mediated capture and N-N bond cleavage of hydrazine at Iron. Inorg Chem 58(2):1147–1154. https://doi.org/10.1021/acs.inorgchem.8b02433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Geri JB, Szymczak NK (2015) A proton-switchable bifunctional ruthenium complex that catalyzes nitrile hydroboration. J Am Chem Soc 137(40):12808–12814. https://doi.org/10.1021/jacs.5b08406

    Article  CAS  PubMed  Google Scholar 

  99. Fujita K-I, Tanino N, Yamaguchi R (2007) Ligand-promoted dehydrogenation of alcohols catalyzed by CpIr complexes. A new catalytic system for oxidant-free oxidation of alcohols. Org Lett 9(1):109–111. https://doi.org/10.1021/ol062806v

    Article  CAS  PubMed  Google Scholar 

  100. Kawahara R, Fujita K-I, Yamaguchi R (2012) Cooperative catalysis by iridium complexes with a bipyridonate ligand: versatile dehydrogenative oxidation of alcohols and reversible dehydrogenation-hydrogenation between 2-propanol and acetone. Angew Chem Int Ed 51(51):12790–12794. https://doi.org/10.1002/anie.201206987

    Article  CAS  Google Scholar 

  101. Saha B, Wahidur Rahaman SM, Daw P, Sengupta G, Bera JK (2014) Metal–ligand cooperation on a diruthenium platform: selective imine formation through acceptorless dehydrogenative coupling of alcohols with amines. Chem Eur J 20(21):6542–6551. https://doi.org/10.1002/chem.201304403

    Article  CAS  PubMed  Google Scholar 

  102. Tseng K-NT, Kampf JW, Szymczak NK (2016) Modular attachment of appended boron Lewis acids to a ruthenium pincer catalyst: metal-ligand cooperativity enables selective alkyne hydrogenation. J Am Chem Soc 138(33):10378–10381. https://doi.org/10.1021/jacs.6b03972

    Article  CAS  PubMed  Google Scholar 

  103. Zell T, Milstein D (2015) Hydrogenation and dehydrogenation Iron pincer catalysts capable of metal-ligand cooperation by aromatization/dearomatization. Acc Chem Res 48(7):1979–1994. https://doi.org/10.1021/acs.accounts.5b00027

    Article  CAS  PubMed  Google Scholar 

  104. Smith J, Ariga K, Anslyn EV (1993) Enhanced imidazole-catalyzed RNA cleavage induced by a bis-alkylguanidinium receptor. J Am Chem Soc 115(1):362–364. https://doi.org/10.1021/ja00054a062

    Article  CAS  Google Scholar 

  105. Aït-Haddou H, Sumaoka J, Wiskur SL, Folmer-Andersen JF, Anslyn EV (2002) Remarkable cooperativity between a ZnII ion and guanidinium/ammonium groups in the hydrolysis of RNA. Angew Chem Int Ed 41(21):4013–4016. https://doi.org/10.1002/1521-3773(20021104)41:21<4013::AID-ANIE4013>3.0.CO;2-Y

    Article  Google Scholar 

  106. Kendall AJ, Zakharov LN, Gilbertson JD (2010) Synthesis and stabilization of a monomeric Iron(II) hydroxo complex via intramolecular hydrogen bonding in the secondary coordination sphere. Inorg Chem 49(19):8656–8658. https://doi.org/10.1021/ic101408e

    Article  CAS  PubMed  Google Scholar 

  107. Delgado M, Sommer SK, Swanson SP, Berger RF, Seda T, Zakharov LN, Gilbertson JD (2015) Probing the protonation state and the redox-active sites of pendant base iron(II) and zinc(II) pyridinediimine complexes. Inorg Chem 54(15):7239–7248. https://doi.org/10.1021/acs.inorgchem.5b00633

    Article  CAS  PubMed  Google Scholar 

  108. Delgado M, Ziegler JM, Seda T, Zakharov LN, Gilbertson JD (2016) Pyridinediimine Iron complexes with pendant redox-inactive metals located in the secondary coordination sphere. Inorg Chem 55(2):555–557. https://doi.org/10.1021/acs.inorgchem.5b02544

    Article  CAS  PubMed  Google Scholar 

  109. Hartle MD, Delgado M, Gilbertson JD, Pluth MD (2016) Stabilization of a Zn(II) hydrosulfido complex utilizing a hydrogen-bond accepting ligand. Chem Commun 52(49):7680–7682. https://doi.org/10.1039/C6CC01373B

    Article  CAS  Google Scholar 

  110. Kwon YM, Delgado M, Zakharov LN, Seda T, Gilbertson JD (2016) Nitrite reduction by a pyridinediimine complex with a proton-responsive secondary coordination sphere. Chem Commun 52(73):11016–11019. https://doi.org/10.1039/C6CC05962G

    Article  CAS  Google Scholar 

  111. Delgado M, Gilbertson JD (2017) Ligand-based reduction of nitrate to nitric oxide utilizing a proton-responsive secondary coordination sphere. Chem Commun 53(81):11249–11252. https://doi.org/10.1039/C7CC06541H

    Article  CAS  Google Scholar 

  112. Burns KT, Marks WR, Cheung PM, Seda T, Zakharov LN, Gilbertson JD (2018) Uncoupled redox-inactive Lewis acids in the secondary coordination sphere entice ligand-based nitrite reduction. Inorg Chem 57(16):9601–9610. https://doi.org/10.1021/acs.inorgchem.8b00032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cheung PM, Burns KT, Kwon YM, Deshaye MY, Aguayo KJ, Oswald VF, Seda T, Zakharov LN, Kowalczyk T, Gilbertson JD (2018) Hemilabile proton relays and redox activity lead to {FeNO}x and significant rate enhancements in NO2- reduction. J Am Chem Soc 140(49):17040–17050. https://doi.org/10.1021/jacs.8b08520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Moore CM, Szymczak NK (2013) 6,6′-Dihydroxy terpyridine: a proton-responsive bifunctional ligand and its application in catalytic transfer hydrogenation of ketones. Chem Commun 49(4):400–402. https://doi.org/10.1039/C2CC36927C

    Article  CAS  Google Scholar 

  115. Moore CM, Bark B, Szymczak NK (2016) Simple ligand modifications with pendent OH groups dramatically impact the activity and selectivity of ruthenium catalysts for transfer hydrogenation: the importance of alkali metals. ACS Catal 6(3):1981–1990. https://doi.org/10.1021/acscatal.6b00229

    Article  CAS  Google Scholar 

  116. Gade LH (2000) Highly polar metal–metal bonds in “early–late” heterodimetallic complexes. Angew Chem Int Ed 39(15):2658–2678. https://doi.org/10.1002/1521-3773(20000804)39:15<2658::AID-ANIE2658>3.0.CO;2-C

    Article  CAS  Google Scholar 

  117. Huang D, Holm RH (2010) Reactions of the terminal NiII-OH group in substitution and electrophilic reactions with carbon dioxide and other substrates: structural definition of binding modes in an intramolecular NiII···FeII bridged site. J Am Chem Soc 132(13):4693–4701. https://doi.org/10.1021/ja1003125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhang X, Huang D, Chen Y-S, Holm RH (2012) Synthesis of binucleating macrocycles and their nickel(II) hydroxo- and cyano-bridged complexes with divalent ions: anatomical variation of ligand features. Inorg Chem 51(20):11017–11029. https://doi.org/10.1021/ic301506x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Dobbek H, Svetlitchnyi V, Gremer L, Huber R, Meyer O (2001) Crystal structure of a carbon monoxide dehydrogenase reveals a [Ni-4Fe-5S] cluster. Science 293(5533):1281–1285. https://doi.org/10.1126/science.1061500

    Article  CAS  PubMed  Google Scholar 

  120. Can M, Armstrong FA, Ragsdale SW (2014) Structure, function, and mechanism of the nickel metalloenzymes, CO dehydrogenase, and acetyl-CoA synthase. Chem Rev 114(8):4149–4174. https://doi.org/10.1021/cr400461p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Halvagar MR, Tolman WB (2013) Isolation of a 2-Hydroxytetrahydrofuran complex from copper-promoted hydroxylation of THF. Inorg Chem 52(15):8306–8308. https://doi.org/10.1021/ic401446s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Haack P, Limberg C (2014) Molecular CuII-O-CuII complexes: still waters run deep. Angew Chem Int Ed 53(17):4282–4293. https://doi.org/10.1002/anie.201309505

    Article  CAS  Google Scholar 

  123. Halvagar MR, Neisen B, Tolman WB (2013) Copper-, palladium-, and platinum-containing complexes of an asymmetric dinucleating ligand. Inorg Chem 52(2):793–799. https://doi.org/10.1021/ic301914u

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by GIF (German-Israeli Foundation for research and development) Grant N I-1508-302.5/2019. This work was supported by the RUDN University Program “5-100.” We are grateful for all stimulating discussion with many colleagues and friends and in particular for all work and insights provided by current and past group members.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Evamarie Hey-Hawkins or Dmitri Gelman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A., Hey-Hawkins, E., Gelman, D. (2020). Cooperative Reactivity by Pincer-Type Complexes Possessing Secondary Coordination Sphere. In: van Koten, G., Kirchner, K., Moret, ME. (eds) Metal-Ligand Co-operativity. Topics in Organometallic Chemistry, vol 68. Springer, Cham. https://doi.org/10.1007/3418_2020_65

Download citation

Publish with us

Policies and ethics