Skip to main content

Iridium Nanoparticles for Hydrogenation Reactions

  • Chapter
  • First Online:
Iridium Catalysts for Organic Reactions

Abstract

The use of iridium nanoparticles (Ir NPs) as catalysts for hydrogenation reactions is reviewed with an emphasis on the recent advances in this area. Different types of Ir NPs are examined: NPs immobilised on supports, ligand-stabilised NPs, confined NPs, NPs stabilised by ionic liquids and polymers and NPs generated in situ without stabilising agent. A key issue is the role of the stabiliser in the catalytic process (activity, selectivity and recyclability). General trends in the use of conditions, stabilisers, additives and co-catalysts were also observed. In spite of the advances achieved in the last decade, there is still a quest for Ir NP-based catalysts with sufficient selectivity to be industrially applied in fine chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heiz U, Landman U (2007) Nanocatalysis. Springer, Berlin

    Google Scholar 

  2. Astruc D (2008) Nanoparticles and catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  3. Philippot K, Serp P (2013) Nanomaterials in catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  4. Liu L, Corma A (2018) Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev 118:4981–5079

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ni B, Wang X (2015) Face the edges: catalytic active sites of nanomaterials. Adv Sci 2:1500085

    Google Scholar 

  6. Mostafa S, Behafarid F, Croy JR, Ono LK, Li L, Yang JC, Frenkel AI, Cuenya BR (2010) Shape-dependent catalytic properties of Pt nanoparticles. J Am Chem Soc 132:15714–15719

    CAS  PubMed  Google Scholar 

  7. Schulz J, Roucoux A, Patin H (1999) Unprecedented efficient hydrogenation of arenes in biphasic liquid-liquid catalysis by re-usable aqueous colloidal suspensions of rhodium. Chem Commun:535–536

    Google Scholar 

  8. Stowell CA, Korgel BA (2005) Iridium nanocrystal synthesis and surface coating-dependent catalytic activity. Nano Lett 5:1203–1207

    CAS  PubMed  Google Scholar 

  9. Roucoux A, Schulz J, Patin H (2003) Arene hydrogenation with a stabilised aqueous rhodium (0) suspension: a major effect of the surfactant counteranion. Adv Synth Catal 345:222–229

    CAS  Google Scholar 

  10. Iablokov V, Beaumont SK, Alayoglu S, Pushkarev VV, Specht C, Gao JH, Alivisatos AP, Kruse N, Somorjai GA (2012) Size-controlled model Co nanoparticle catalysts for CO2 hydrogenation: synthesis, characterization, and catalytic reactions. Nano Lett 12:3091–3096

    CAS  PubMed  Google Scholar 

  11. Pan C, Pelzer K, Philippot K, Chaudret B, Dassenoy F, Lecante P, Casanove MJ (2001) Ligand-stabilized ruthenium nanoparticles: synthesis, organization, and dynamics. J Am Chem Soc 123:7584–7593

    CAS  PubMed  Google Scholar 

  12. Duteil A, Queau R, Chaudret B, Mazel R, Roucau C, Bradley JS (1993) Preparation of organic solutions or solid films of small particles of ruthenium, palladium, and platinum from organometallic precursors in the presence of cellulose derivatives. Chem Mater 5:341–347

    CAS  Google Scholar 

  13. Dupont J, Fonseca GS, Umpierre AP, Fichtner PFP, Teixeira SR (2002) Transition-metal nanoparticles in imidazolium ionic liquids: recyclable catalysts for biphasic hydrogenation reactions. J Am Chem Soc 124:4228–4229

    CAS  PubMed  Google Scholar 

  14. Ryu J, Sanchez L, Keul HA, Raj A, Bockstaller MR (2008) Imidazolium-based ionic liquids as efficient shape-regulating solvents for the synthesis of gold nanorods. Angew Chem Int Ed 47:7639–7643

    CAS  Google Scholar 

  15. Martínez-Prieto LM, Chaudret B (2018) Organometallic ruthenium nanoparticles: synthesis, surface chemistry, and insights into ligand coordination. Acc Chem Res 51:376–384

    PubMed  Google Scholar 

  16. Martínez-Prieto LM, van Leeuwen PWNM (2020) van Leeuwen PWNM, Claver C (eds) Ligand effects in ruthenium nanoparticle catalysis. Recent advances in nanoparticle catalysis. Springer-Nature, Cham

    Google Scholar 

  17. Chinthaginjala JK, Villa A, Su DS, Mojet BL, Lefferts L (2012) Nitrite reduction over Pd supported CNFs: metal particle size effect on selectivity. Catal Today 183:119–123

    CAS  Google Scholar 

  18. Ismail AA, Hakki A, Bahnemann DW (2012) Mesostructure Au/TiO2 nanocomposites for highly efficient catalytic reduction of p-nitrophenol. J Mol Catal A Chem 358:45–151

    Google Scholar 

  19. Martinez-Prieto LM, Baquero EA, Pieters G, Flores JC, de Jesus E, Nayral C, Delpech F, van Leeuwen PWNM, Lippens G, Chaudret B (2017) Monitoring of nanoparticle reactivity in solution: interaction of l-lysine and Ru nanoparticles probed by chemical shift perturbation parallels regioselective H/D exchange. Chem Commun 53:5850–5853

    CAS  Google Scholar 

  20. Martinez-Prieto LM, Cano I, Marquez A, Baquero EA, Tricard S, Cusinato L, del Rosal I, Poteau R, Coppel Y, Philippot K, Chaudret B, Campora J, van Leeuwen PWNM (2017) Zwitterionic amidinates as effective ligands for platinum nanoparticle hydrogenation catalysts. Chem Sci 8:2931–2941

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sheldo RA, Arends I, Hanefeld U (2007) Green chemistry and catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  22. Weissermel K, Arpe HJ (1993) Industrial organic chemistry. VCH, New York

    Google Scholar 

  23. Lovering F, Bikker J, Humblet C (2009) Escape from flatland: increasing saturation as an approach to improving clinical success. J Med Chem 52:6752–6756

    CAS  PubMed  Google Scholar 

  24. García-Antón J, Axet MR, Jansat S, Philippot K, Chaudret B, Pery T, Buntkowsky G, Limbach HH (2008) Reactions of olefins with ruthenium hydride nanoparticles: NMR characterization, hydride titration, and room-temperature C–C bond activation. Angew Chem Int Ed 47:2074–2078

    Google Scholar 

  25. Hu Y, Yu Y, Hou Z, Li H, Zhao X, Feng B (2008) Biphasic hydrogenation of olefins by functionalized ionic liquid-stabilized palladium nanoparticles. Adv Synth Catal 350:2077–2085

    CAS  Google Scholar 

  26. Fiorio JL, López N, Rossi LM (2017) Gold–ligand-catalyzed selective hydrogenation of alkynes into cis-alkenes via H2 Heterolytic activation by frustrated Lewis Pairs. ACS Catal 7:2973–2980

    CAS  Google Scholar 

  27. Delgado JA, Benkirane O, Claver C, Curulla-Ferre D, Godard C (2017) Advances in the preparation of highly selective nanocatalysts for the semi-hydrogenation of alkynes using colloidal approaches. Dalton Trans 46:12381–12403

    CAS  PubMed  Google Scholar 

  28. López-Vinasco AM, Martínez-Prieto LM, Asensio JM, Lecante P, Chaudret B, Cámpora J, van Leeuwen PWNM (2020) Novel nickel nanoparticles stabilized by imidazolium-amidinate ligands for selective hydrogenation of alkynes. Catal Sci Tech 10:342–350

    Google Scholar 

  29. Fang M, Sánchez-Delgado RA (2014) Ruthenium nanoparticles supported on magnesium oxide: a versatile and recyclable dual-site catalyst for hydrogenation of mono- and poly-cyclic arenes, N-heteroaromatics, and S-heteroaromatics. J Catal 311:357–368

    CAS  Google Scholar 

  30. Rakers L, Martínez-Prieto LM, López-Vinasco AM, Philippot K, van Leeuwen PWNM, Chaudret B, Glorius F (2018) Ruthenium nanoparticles ligated by cholesterol-derived NHCs and their application in the hydrogenation of arenes. Chem Commun 54:7070–7073

    CAS  Google Scholar 

  31. Cano I, Tschan MJL, Martinez-Prieto LM, Philippot K, Chaudret B, van Leeuwen PWNM (2016) Enantioselective hydrogenation of ketones by iridium nanoparticles ligated with chiral secondary phosphine oxides. Catal Sci Tech 6:3758–3766

    CAS  Google Scholar 

  32. Martinez-Prieto LM, Ferry A, Rakers L, Richter C, Lecante P, Philippot K, Chaudret B, Glorius F (2016) Long-chain NHC-stabilized RuNPs as versatile catalysts for one-pot oxidation/hydrogenation reactions. Chem Commun 52:4768–4771

    CAS  Google Scholar 

  33. Mitsudome T, Yamamoto M, Maeno Z, Mizugaki T, Jitsukawa K, Kaneda K (2015) One-step synthesis of Core-gold/Shell-ceria nanomaterial and its catalysis for highly selective Semihydrogenation of alkynes. J Am Chem Soc 137:13452–13455

    CAS  PubMed  Google Scholar 

  34. Cano I, Martinez-Prieto LM, Fazzini PF, Coppel Y, Chaudret B, van Leeuwen PWNM (2017) Characterization of secondary phosphine oxide ligands on the surface of iridium nanoparticles. Phys Chem Chem Phys 19:21655–21662

    CAS  PubMed  Google Scholar 

  35. Wan W, Nie X, Janik MJ, Song C, Guo X (2018) Adsorption, dissociation, and spillover of hydrogen over Au/TiO2 catalysts: the effects of cluster size and metal–support interaction from DFT. J Phys Chem C 122:17895–17916

    CAS  Google Scholar 

  36. Luza L, Rambor CP, Gual A, Alves Fernandes J, Eberhardt D, Dupont J (2017) Revealing hydrogenation reaction pathways on naked gold nanoparticles. ACS Catal 7:2791–2799

    CAS  Google Scholar 

  37. Corma A, Serna P (2006) Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 313:332–334

    CAS  PubMed  Google Scholar 

  38. Li G, Zeng C, Jin R (2015) Chemoselective hydrogenation of nitrobenzaldehyde to nitrobenzyl alcohol with unsupported Au nanorod catalysts in water. J Phys Chem C 119:11143–11147

    CAS  Google Scholar 

  39. Pritchard J, Filonenko GA, van Putten R, Hensen EJM, Pidko EA (2015) Heterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives: history, advances and future directions. Chem Soc Rev 44:3808–3833

    CAS  PubMed  Google Scholar 

  40. Martínez-Prieto LM, Puche M, Cerezo-Navarrete C, Chaudret B (2019) Uniform Ru nanoparticles on N-doped graphene for selective hydrogenation of fatty acids to alcohols. J Catal 377:429–437

    Google Scholar 

  41. Scholten JD (2013) From soluble to supported iridium metal nanoparticles, active and recyclable catalysts for hydrogenation reactions. Curr Org Chem 17(4):348–363

    CAS  Google Scholar 

  42. Martínez-Prieto LM, van Leeuwen PWNM (2020) Ligand effects in ruthenium nanoparticle catalysis. In: Turner N, Claver C, van Leeuwen PWNM (eds) Recent advances in nanoparticle catalysis. Springer, Berlin

    Google Scholar 

  43. Gual A, Godard C, Philippot K, Chaudret B, Denicourt-Nowicki A, Roucoux A, Castillón S, Claver C (2009) Carbohydrate-derived 1,3-diphosphite ligands as chiral nanoparticle stabilizers: promising catalytic systems for asymmetric hydrogenation. ChemSusChem 2:769–779

    CAS  PubMed  Google Scholar 

  44. Ruiz D, Oportus M, Godard C, Claver C, Fierro JLG, Reyes P (2012) Novel metal nanoparticles stabilized with (2R,4R)-2,4-bis(diphenylphosphino)pentane on SiO2. Their use as catalysts in Enantioselective hydrogenation reactions. Curr Org Chem 16:2754–2762

    CAS  Google Scholar 

  45. Cano I, Tschan MJ-L, Martinez-Prieto LM, Philippot K, Chaudret B, van Leeuwen PWNM (2016) Enantioselective hydrogenation of ketones by iridium nanoparticles ligated with chiral secondary phosphine oxides. Cat Sci Technol 6:3758–3766

    CAS  Google Scholar 

  46. Cano I, Chapman AM, Urakawa A, van Leeuwen PWNM (2014) Air-stable gold nanoparticles ligated by secondary phosphine oxides for the chemoselective hydrogenation of aldehydes: crucial role of the ligand. J Am Chem Soc 136:2520–2528

    CAS  PubMed  Google Scholar 

  47. Cano I, Huertos MA, Chapman AM, Buntkowsky G, Gutmann T, Groszewicz PB, van Leeuwen PWNM (2015) Air-stable gold nanoparticles ligated by secondary phosphine oxides as catalysts for the chemoselective hydrogenation of substituted aldehydes: a remarkable ligand effect. J Am Chem Soc 137:7718–7727

    CAS  PubMed  Google Scholar 

  48. Cano I, Martínez-Prieto LM, Fazzini PF, Coppel Y, Chaudret B, van Leeuwen PWNM (2017) Characterization of secondary phosphine oxide ligands on the surface of iridium nanoparticles. Phys Chem Chem Phys 19:21655–21662

    CAS  PubMed  Google Scholar 

  49. Cano I, Martínez-Prieto LM, Chaudret B, van Leeuwen PWNM (2017) Iridium versus iridium: nanocluster and monometallic catalysts carrying the same ligand behave differently. Chem Eur J 23:1444–1450

    CAS  PubMed  Google Scholar 

  50. Li W, Wang Y, Chen P, Zeng M, Jiang J, Jin Z (2016) Thermoregulated phase-transfer iridium nanoparticle catalyst: highly selective hydrogenation of the C=O bond for α,β-unsaturated aldehydes and the C=C bond for α,β-unsaturated ketones. Cat Sci Technol 6:7386–7390

    CAS  Google Scholar 

  51. Mévellec V, Roucoux A, Ramirez E, Philippot K, Chaudret B (2004) Surfactant-stabilized aqueous iridium(0) colloidal suspension: an efficient reusable catalyst for hydrogenation of Arenes in biphasic media. Adv Synth Catal 346:72–76

    Google Scholar 

  52. Stowell CA, Korgel BA (2005) Iridium nanocrystal synthesis and surface coating dependent catalytic activity. Nano Lett 5:1203–1207

    CAS  PubMed  Google Scholar 

  53. Mondloch JE, Özkar S, Finke RG (2018) “Weakly ligated, labile ligand” nanoparticles: the case of Ir(0)n·(H+Cl−)m. ACS Omega 3:14538–14550

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Egeberg A, Dietrich C, Kind C, Popescu R, Gerthsen D, Behrens S, Feldmann C (2017) Bimetallic nickel-iridium and nickel-osmium alloy nanoparticles and their catalytic performance in hydrogenation reactions. ChemCatChem 9:3534–3543

    CAS  Google Scholar 

  55. Wasserscheid P, Keim W (2000) Ionic liquids-new “solutions” for transition metal catalysis. Angew Chem Int Ed 39:3772–3789

    CAS  Google Scholar 

  56. Aparicio S, Atilhan M, Karadas F (2010) Thermophysical properties of pure ionic liquids: review of present situation. Ind Eng Chem Res 49:9580–9595

    CAS  Google Scholar 

  57. Hulsbosch J, De Vos DE, Binnemans K, Ameloot R (2016) Biobased ionic liquids: solvents for a green processing industry? ACS Sustain Chem Eng 4:2917–2931

    CAS  Google Scholar 

  58. Dupont J, Scholten JD (2010) On the structural and surface properties of transition-metal nanoparticles in ionic liquids. Chem Soc Rev 39:1780–1804

    CAS  PubMed  Google Scholar 

  59. Migowski P, Dupont J (2007) Catalytic applications of metal nanoparticles in Imidazolium ionic liquids. Chem Eur J 13:32–39

    CAS  PubMed  Google Scholar 

  60. Scholten JD, Leal BC, Dupont J (2012) Transition metal nanoparticle catalysis in ionic liquids. ACS Catal 2:184–200

    CAS  Google Scholar 

  61. Dupont J, Fonseca GS, Umpierre AP, Fichtner PFP, Teixeira SR (2002) Transition-metal nanoparticles in Imidazolium ionic liquids: recyclable catalysts for biphasic hydrogenation reactions. J Am Chem Soc 124:4228–4229

    CAS  PubMed  Google Scholar 

  62. Fonseca GS, Umpierre AP, Fichtner PFP, Teixeira SR, Dupont J (2003) The use of Imidazolium ionic liquids for the formation and stabilization of Ir0 and Rh0 nanoparticles: efficient catalysts for the hydrogenation of Arenes. Chem Eur J 9:3263–3269

    CAS  PubMed  Google Scholar 

  63. Fonseca GS, Scholten JD, Dupont J (2004) Iridium nanoparticles prepared in ionic liquids: an efficient catalytic system for the hydrogenation of ketones. Synlett 9:1525–1528

    Google Scholar 

  64. Fonseca GS, Silveira ET, Gelesky MA, Dupont J (2005) Competitive hydrogenation of alkyl-substituted Arenes by transition-metal nanoparticles: correlation with the alkyl-steric effect. Adv Synth Catal 347:847–853

    CAS  Google Scholar 

  65. Fonseca GS, Domingos JB, Nome F, Dupont J (2006) On the kinetics of iridium nanoparticles formation in ionic liquids and olefin hydrogenation. J Mol Cat A-Chem 248:10–16

    CAS  Google Scholar 

  66. Fonseca GS, Machado G, Teixeira SR, Fecher GH, Morais J, Alves MCM, Dupont J (2006) Synthesis and characterization of catalytic iridium nanoparticles in imidazolium ionic liquids. J Colloid Interf Sci 301:193–204

    CAS  Google Scholar 

  67. Scholten JD, Ebeling G, Dupont J (2007) On the involvement of NHC carbenes in catalytic reactions by iridium complexes, nanoparticle and bulk metal dispersed in imidazolium ionic liquids. Dalton Trans:5554–5560

    Google Scholar 

  68. Migowski P, Zanchet D, Machado G, Gelesky MA, Teixeira SR, Dupont J (2010) Nanostructures in ionic liquids: correlation of iridium nanoparticles’ size and shape with imidazolium salts’ structural organization and catalytic properties. Phys Chem Chem Phys 12:6826–6833

    CAS  PubMed  Google Scholar 

  69. Faria VW, Brunelli MF, Scheeren CW (2015) Iridium nanoparticles supported in polymeric membranes: a new material for hydrogenation reactions. RSC Adv 5:84920–84926

    CAS  Google Scholar 

  70. Redel E, Krämer J, Thomann R, Janiak C (2009) Synthesis of Co, Rh and Ir nanoparticles from metal carbonyls in ionic liquids and their use as biphasic liquid–liquid hydrogenation nanocatalysts for cyclohexene. J Organomet Chem 694:1069–1075

    CAS  Google Scholar 

  71. Vollmer C, Redel E, Abu-Shandi K, Thomann R, Manyar H, Hardacre C, Janiak C (2010) Microwave irradiation for the facile synthesis of transition-metal nanoparticles (NPs) in ionic liquids (ILs) from metal–carbonyl precursors and Ru-, Rh-, and Ir-NP/IL dispersions as biphasic liquid–liquid hydrogenation Nanocatalysts for cyclohexene. Chem Eur J 16:3849–3858

    CAS  PubMed  Google Scholar 

  72. Esteban RM, Schütte K, Brandt P, Marquardt D, Meyer H, Beckert F, Mülhaupt R, Kölling H, Janiak C (2015) Iridium@graphene composite nanomaterials synthesized in ionic liquid as re-usable catalysts for solvent-free hydrogenation of benzene and cyclohexene. Nano-Struct Nano-Objects 2:11–18

    CAS  Google Scholar 

  73. Jiang H-Y, Xu J, Sun B (2018) Selective hydrogenation of aromatic compounds using modified iridium nanoparticles. Appl Organometal Chem:e4260

    Google Scholar 

  74. Koczkur KM, Mourdikoudis S, Polavarapu L, Skrabalak SE (2015) Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans 44:17883–17905

    CAS  PubMed  Google Scholar 

  75. Tu W-x, He B-l, H-f L, Luo X-l, Liang X (2005) Catalytic properties of polymer-stabilized colloidal metal nanoparticles synthesized by microwave irradiation. Chin J Polym Sci 23:211–217

    CAS  Google Scholar 

  76. Sharif MJ, Maity P, Yamazoe S, Tsukuda T (2013) Selective hydrogenation of nitroaromatics by colloidal iridium nanoparticles. Chem Lett 42:1023–1025

    CAS  Google Scholar 

  77. Corma A, Serna P, Concepción P, Calvino JJ (2008) Transforming nonselective into chemoselective metal catalysts for the hydrogenation of substituted Nitroaromatics. J Am Chem Soc 130:8748–8753, and references therein

    CAS  PubMed  Google Scholar 

  78. Makosch M, Lin W-I, Bumbálek V, Sá J, Medlin JW, Hungerbühler K, van Bokhoven JA (2012) Organic Thiol modified Pt/TiO2 catalysts to control chemoselective hydrogenation of substituted Nitroarenes. ACS Catal 2:2079–2081, and references therein

    CAS  Google Scholar 

  79. Nishida Y, Chaudhari C, Imatome H, Sato K, Nagaoka K (2018) Selective hydrogenation of nitriles to secondary imines over Rh-PVP catalyst under mild conditions. Chem Lett 47:938–940

    CAS  Google Scholar 

  80. Gao L, Kojima K, Nagashima H (2015) Transition metal nanoparticles stabilized by ammonium salts of hyperbranched polystyrene: effect of metals on catalysis of the biphasic hydrogenation of alkenes and arenes. Tetrahedron 71:6414–6423

    CAS  Google Scholar 

  81. Ghosh S, Jagirdar BR (2017) Synthesis of mesoporous iridium nanosponge: a highly active, thermally stable and efficient olefin hydrogenation catalyst. Dalton Trans 46:11431–11439

    CAS  PubMed  Google Scholar 

  82. Özkar S, Finke RG (2005) Iridium(0) nanocluster, acid-assisted catalysis of neat acetone hydrogenation at room temperature: exceptional activity, catalyst lifetime, and selectivity at complete conversion. J Am Chem Soc 127:4800–4808

    PubMed  Google Scholar 

  83. Bayram E, Zahmakıran M, Özkar S, Finke RG (2010) In situ formed “weakly ligated/labile ligand” iridium(0) nanoparticles and aggregates as catalysts for the complete hydrogenation of neat benzene at room temperature and mild pressures. Langmuir 26:12455–12464

    CAS  PubMed  Google Scholar 

  84. Alley WM, Hamdemir IK, Wang Q, Frenkel AI, Li L, Yang JC, Menard LD, Nuzzo RG, Ozkar S, Johnson KA, Finke RG (2010) Iridium Ziegler-type hydrogenation catalysts made from [(1,5-COD)Ir(μ-O2C8H15)]2 and AlEt3: spectroscopic and kinetic evidence for the Irn species present and for nanoparticles as the fastest catalyst. Inorg Chem 49:8131–8147

    CAS  PubMed  Google Scholar 

  85. Widegren JA, Finke RG (2003) A review of the problem of distinguishing true homogeneous catalysis from soluble or other metal-particle heterogeneous catalysis under reducing conditions. J Mol Cat A Chem 198:317–341

    CAS  Google Scholar 

  86. Hamdemir IK, Özkar S, Yih K-H, Mondloch JE, Finke RG (2012) Hydrocarbon-soluble, isolable Ziegler-type Ir(0)n nanoparticle catalysts made from [(1,5-COD)Ir(μ-O2C8H15)]2 and 2–5 equivalents of AlEt3: their high catalytic activity, long lifetime, and AlEt3-dependent, exceptional, 200°C thermal stability. ACS Catal 2:632–641

    CAS  Google Scholar 

  87. Hamdemir IK, Özkar S, Finke RG (2013) Exceptionally thermally stable, hydrocarbon soluble Ziegler-type Ir(0)n nanoparticle catalysts made from [Ir(1,5-COD)(m-O2C8H15)]2 plus AlEt3: tests of key hypotheses for their unusual stabilization. J Mol Cat A-Chem 378:333–343

    CAS  Google Scholar 

  88. Ott LS, Finke RG (2008) Supersensitivity of transition-metal nanoparticle formation to initial precursor concentration and reaction temperature*: understanding its origins. J Nanosci Nanotechnol 8:1551–1556

    CAS  PubMed  Google Scholar 

  89. Laxson WW, Finke RG (2014) Nucleation is second order: an apparent kinetically effective nucleus of two for Ir(0)n nanoparticle formation from [(1,5-COD)IrI·P2W15Nb3O62]8− plus hydrogen. J Am Chem Soc 136:17601–17615

    CAS  PubMed  Google Scholar 

  90. Özkar S, Finke RG (2017) Nanoparticle nucleation is Termolecular in metal and involves hydrogen: evidence for a kinetically effective nucleus of three {Ir3H2x·P2W15Nb3O62}6− in Ir(0)n nanoparticle formation from [(1,5-COD)IrI·P2W15Nb3O62]8− plus hydrogen. J Am Chem Soc 139:5444–5457

    PubMed  Google Scholar 

  91. Ji Y-G, Wei K, Liu T, Wu L, Zhang W-H (2017) “Naked” iridium(IV) oxide nanoparticles as expedient and robust catalysts for hydrogenation of nitrogen heterocycles: remarkable vicinal substitution effect and recyclability. Adv Synth Catal 359:933–940

    CAS  Google Scholar 

  92. Albani D, Li Q, Vilé G, Mitchell S, Almora-Barrios N, Witte PT, López N, Pérez-Ramírez J (2017) Interfacial acidity in ligand-modified ruthenium nanoparticles boosts the hydrogenation of levulinic acid to gamma-valerolactone. Green Chem 19:2361–2370

    CAS  Google Scholar 

  93. Machado BF, Gomes HT, Serp P, Kalck P, Faria JL (2010) Liquid-phase hydrogenation of unsaturated aldehydes: enhancing selectivity of multiwalled carbon nanotube-supported catalysts by thermal activation. ChemCatChem 2:190–197

    CAS  Google Scholar 

  94. Rueping M, Koenigs RM, Borrmann R, Zoller J, Weirich TE, Mayer J (2011) Size-selective, stabilizer-free, hydrogenolytic synthesis of iridium nanoparticles supported on carbon nanotubes. Chem Mater 23:2008–2010

    CAS  Google Scholar 

  95. Du X, Liu Y, Wang J, Cao Y, Fan K (2013) Catalytic conversion of biomass-derived levulinic acid into γ-valerolactone using iridium nanoparticles supported on carbon nanotubes. Cuihua Xuebao 34:993–1001

    CAS  Google Scholar 

  96. Li H-B, Liu L, Ma X-Y (2016) Effective hydrogenation of Haloaromatic nitro compounds catalysed by iridium nanoparticles deposited on multiwall carbon nanotubes. Synth React Inorg Met Org Nano Met Chem 46:1499–1505

    CAS  Google Scholar 

  97. Motoyama Y, Taguchi M, Desmira N, Yoon S-H, Mochida I, Nagashima H (2014) Chemoselective hydrogenation of functionalized nitroarenes and imines by using carbon nanofiber-supported iridium nanoparticles. Chem Asian J 9:71–74

    CAS  PubMed  Google Scholar 

  98. Bernas H, Simakova I, Prosvirin IP, Maeki-Arvela P, Leino R, Murzin DY (2012) Hydrogenation of citral over carbon supported iridium catalysts. Catal Lett 142(6):690–697

    CAS  Google Scholar 

  99. Kato S, Nanao H, Shirai M (2019) Graphite intercalated iridium nanodisks for cinnamaldehyde hydrogenation. Chem Lett 48:1262–1265

    CAS  Google Scholar 

  100. Sui D, Mao F, Fan H, Qi Z, Huang J (2017) General reductive amination of aldehydes and ketones with amines and Nitroaromatics under H2 by recyclable iridium catalysts. Chin J Chem 35:1371–1377

    CAS  Google Scholar 

  101. Ledesma B, Juarez J, Mazario J, Domine M, Beltramone A (2019) Bimetallic platinum/iridium modified mesoporous catalysts applied in the hydrogenation of HMF. Catal Today. https://doi.org/10.1016/j.cattod.2019.06.037

  102. Szumelda T, Drelinkiewicz A, Kosydar R, Goral-Kurbiel M, Gurgul J, Duraczynska D (2017) Formation of Pd-group VIII bimetallic nanoparticles by the “water-in-oil” microemulsion method. Colloids Surf A Physicochem Eng Asp 529:246–260

    CAS  Google Scholar 

  103. Navalon S, Dhakshinamoorthy A, Alvaro M, Garcia H (2016) Metal nanoparticles supported on two-dimensional graphenes as heterogeneous catalysts. Coord Chem Rev 312:99–148

    CAS  Google Scholar 

  104. Wang Y, Rong X, Wang T, Wu S, Rong Z, Wang Y, Qu J (2019) Influence of graphene surface chemistry on Ir-catalyzed hydrogenation of p-chloronitrobenzene and cinnamaldehyde: weak molecule-support interactions. J Catal 377:524–533

    CAS  Google Scholar 

  105. Chen P, Lu J-Q, Xie G-Q, Hu G-S, Zhu L, Luo L-F, Huang W-X, Luo M-F (2012) Effect of reduction temperature on selective hydrogenation of crotonaldehyde over Ir/TiO2 catalysts. Appl Catal A 433-434:236–242

    CAS  Google Scholar 

  106. Reyes P, Aguirre MC, Melián-Cabrera I, López Granados M, Fierro JLG (2002) Interfacial properties of an Ir/TiO2 system and their relevance in crotonaldehyde hydrogenation. J Catal 208:229–237

    CAS  Google Scholar 

  107. Rojas H, Martinez JJ, Mancipe S, Borda G, Reyes P (2012) Citral hydrogenation over novel niobia and titania supported Au, Ir-Au and Ir catalysts. React Kinet Mech Catal 106:445–455

    CAS  Google Scholar 

  108. Zhao EW, Zheng H, Ludden K, Xin Y, Hagelin-Weaver HE, Bowers CR (2016) Strong metal-support interactions enhance the pairwise selectivity of Parahydrogen addition over Ir/TiO2. ACS Catal 6:974–978

    CAS  Google Scholar 

  109. Toledo-Antonio JA, Angeles-Chavez C, Cortes-Jacome MA, Cuauhtemoc-Lopez I, Lopez-Salinas E, Mosqueira ML, Ferrat G (2016) Metal support interaction effects on the reducibility of Ir nanoparticles on Titania nanotubes. Top Catal 59:366–377

    CAS  Google Scholar 

  110. Toledo-Antonio JA, Angeles-Chavez C, Cortes-Jacome MA, Cuauhtemoc-Lopez I, Lopez-Salinas E, Perez-Luna M, Ferrat-Torres G (2012) Highly dispersed Pt-Ir nanoparticles on titania nanotubes. Appl Catal A 437-438:155–165

    CAS  Google Scholar 

  111. Zhao J, Ni J, Xu J, Xu J, Cen J, Li X (2014) Ir promotion of TiO2 supported Au catalysts for selective hydrogenation of cinnamaldehyde. Catal Commun 54:72–76

    CAS  Google Scholar 

  112. Fan G-Y, Zhang L, Fu H-Y, Yuan M-L, Li R-X, Chen H, Li X-J (2010) Hydrous zirconia supported iridium nanoparticles: an excellent catalyst for the hydrogenation of haloaromatic nitro compounds. Catal Commun 11:451–455

    CAS  Google Scholar 

  113. Campos C, Torres C, Oportus M, Pena MA, Fierro JLG, Reyes P (2013) Hydrogenation of substituted aromatic nitrobenzenes over 1% 1.0 wt.%Ir/ZrO2 catalyst: effect of meta position and catalytic performance. Catal Today 213:93–100

    CAS  Google Scholar 

  114. He S, Xie L, Che M, Chan HC, Yang L, Shi Z, Tang Y, Gao Q (2016) Chemoselective hydrogenation of α,β-unsaturated aldehydes on hydrogenated MoOx nanorods supported iridium nanoparticles. J Mol Catal A Chem 425:248–254

    CAS  Google Scholar 

  115. Xie L, Chen T, Chan HC, Shu Y, Gao Q (2018) Hydrogen doping into MoO3 supports toward modulated metal-support interactions and efficient furfural hydrogenation on iridium nanocatalysts. Chem Asian J 13:641–647

    CAS  PubMed  Google Scholar 

  116. Xie L, Chen T, Chan HC, Shu Y, Gao Q (2018) Hydrogen doping into MoO3 supports toward modulated metal-support interactions and efficient furfural hydrogenation on iridium nanocatalysts. Chem Asian J 13:641–647

    CAS  PubMed  Google Scholar 

  117. Tamura M, Yonezawa D, Oshino T, Nakagawa Y, Tomishige K (2017) In situ formed Fe cation modified Ir/MgO catalyst for selective hydrogenation of unsaturated carbonyl compounds. ACS Catal 7:5103–5111

    CAS  Google Scholar 

  118. Mondloch JE, Wang Q, Frenkel AI, Finke RG (2010) Development plus kinetic and mechanistic studies of a prototype supported-nanoparticle heterogeneous catalyst formation system in contact with solution: Ir(1,5-COD)Cl/γ-Al2O3 and its reduction by H2 to Ir(0)n/γ-Al2O3. J Am Chem Soc 132(28):9701–9714

    CAS  PubMed  Google Scholar 

  119. Nassreddine S, Bergeret G, Jouguet B, Geantet C, Piccolo L (2010) Operando study of iridium acetylacetonate decomposition on amorphous silica-alumina for bifunctional catalyst preparation. Phys Chem Chem Phys 12:7812–7820

    CAS  PubMed  Google Scholar 

  120. Nassreddine S, Casu S, Zotin JL, Geantet C, Piccolo L (2011) Thiotolerant Ir/SiO2-Al2O3 bifunctional catalysts: effect of support acidity on tetralin hydroconversion. Cat Sci Technol 1:408–412

    CAS  Google Scholar 

  121. Dongil AB, Bachiller-Baeza B, Rodriguez-Ramos I, Guerrero-Ruiz A, Mondelli C, Baiker A (2013) Structural properties of alumina- and silica-supported iridium catalysts and their behavior in the enantioselective hydrogenation of ethyl pyruvate. Appl Catal A 451:14–20

    CAS  Google Scholar 

  122. Lopez-De Jesus YM, Vicente A, Lafaye G, Marecot P, Williams CT (2008) Synthesis and characterization of dendrimer-derived supported iridium catalysts. J Phys Chem C 112:13837–13845

    CAS  Google Scholar 

  123. Beckers NA, Huynh S, Zhang X, Luber EJ, Buriak JM (2012) Screening of heterogeneous multimetallic nanoparticle catalysts supported on metal oxides for mono-, poly-, and heteroaromatic hydrogenation activity. ACS Catal 2:1524–1534

    CAS  Google Scholar 

  124. Tang M, Mao S, Li X, Chen C, Li M, Wang Y (2017) Highly effective Ir-based catalysts for benzoic acid hydrogenation: experiment- and theory-guided catalyst rational design. Green Chem 19:1766–1774

    CAS  Google Scholar 

  125. Park IS, Kwon MS, Kang KY, Lee JS, Park J (2007) Rhodium and iridium nanoparticles entrapped in aluminum oxyhydroxide nanofibers: catalysts for hydrogenations of arenes and ketones at room temperature with hydrogen balloon. Adv Synth Catal 349:2039–2047

    CAS  Google Scholar 

  126. Fan G, Zhang C (2014) Effective hydrogenation of p-chloronitrobenzene over iridium nanoparticles entrapped in aluminum oxy-hydroxide under mild conditions. Adv Mater Res 881-883:267–270

    Google Scholar 

  127. Higaki T, Kitazawa H, Yamazoe S, Tsukuda T (2016) Partially oxidized iridium clusters within dendrimers: size-controlled synthesis and selective hydrogenation of 2-nitrobenzaldehyde. Nanoscale 8:11371–11374

    CAS  PubMed  Google Scholar 

  128. Tamura M, Tokonami K, Nakagawa Y, Tomishige K (2013) Rapid synthesis of unsaturated alcohols under mild conditions by highly selective hydrogenation. Chem Commun 49:7034–7036

    CAS  Google Scholar 

  129. Yang H, Huang C, Yang F, Yang X, Du L, Liao S (2015) Mesoporous silica nanoparticle supported PdIr bimetal catalyst for selective hydrogenation, and the significant promotional effect of Ir. Appl Surf Sci 357:558–563

    CAS  Google Scholar 

  130. Zheng Y, He P, Fang Y, Yang X, Liang H (2017) Hollow mesoporous silica supported PtIr bimetal catalysts for selective hydrogenation of phenol: significant promotion effect of iridium. RSC Adv 7:31582–315879

    CAS  Google Scholar 

  131. Ding K, Cullen DA, Zhang L, Cao Z, Roy AD, Ivanov IN, Cao D (2018) A general synthesis approach for supported bimetallic nanoparticles via surface inorganometallic chemistry. Science 362:560–564

    CAS  PubMed  Google Scholar 

  132. Guo H, Li H, Jarvis K, Wan H, Kunal P, Dunning SG, Liu Y, Henkelman G, Humphrey SM (2018) Microwave-assisted synthesis of classically immiscible Ag-Ir alloy nanoparticle catalysts. ACS Catal 8:11386–11397

    CAS  Google Scholar 

  133. Das P, Sarmah PP, Borah BJ, Saikia L, Dutta DK (2016) Aromatic ring hydrogenation catalysed by nanoporous montmorillonite supported Ir(0)-nanoparticle composites under solvent free conditions. New J Chem 40:2850–2855

    CAS  Google Scholar 

  134. Tonbul Y, Zahmakiran M, Ozkar S (2014) Iridium(0) nanoparticles dispersed in zeolite framework: a highly active and long-lived green nanocatalyst for the hydrogenation of neat aromatics at room temperature. Appl Catal B 148-149:466–472

    CAS  Google Scholar 

  135. Bayram E, Lu J, Aydin C, Browning ND, Ozkar S, Finney E, Gates BC, Finke RG (2015) Agglomerative sintering of an atomically dispersed Ir1/zeolite Y catalyst: compelling evidence against Ostwald ripening but for bimolecular and autocatalytic agglomeration catalyst sintering steps. ACS Catal 5(6):3514–3527

    CAS  Google Scholar 

  136. Niederer JPM, Arnold ABJ, Holderich WF, Spliethof B, Tesche B, Reetz M, Bonnemann H (2002) Noble metal nanoparticles incorporated in mesoporous hosts. Top Catal 18:265–269

    CAS  Google Scholar 

  137. Zahmakiran M (2012) Iridium nanoparticles stabilized by metal organic frameworks (IrNPs@ZIF-8): synthesis, structural properties and catalytic performance. Dalton Trans 41:12690–12696

    CAS  PubMed  Google Scholar 

  138. Friedrich M, Klarner M, Hermannsdoerfer J, Kempe R (2018) Nanometer-scaled iridium particles gas-phase-loaded into the pores of the metal-organic framework MIL-101. Polyhedron 155:441–446

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piet W. N. M. van Leeuwen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martínez-Prieto, L.M., Cano, I., van Leeuwen, P.W.N.M. (2020). Iridium Nanoparticles for Hydrogenation Reactions. In: Oro, L.A., Claver, C. (eds) Iridium Catalysts for Organic Reactions. Topics in Organometallic Chemistry, vol 69. Springer, Cham. https://doi.org/10.1007/3418_2020_60

Download citation

Publish with us

Policies and ethics